Рубрика «машинное обучение» - 68

image

Nvidia создала AI-систему DIB-R (differentiable interpolation-based renderer), которая построена на основе ML-фреймворка PyTorch. Система способна преобразовывать двухмерные изображения в трехмерные объекты.

DIB-R обрабатывает картинку, а затем преобразует ее в высокоточную 3D-модель. Учитываются формы, текстура, цвета и освещение объекта. При этом задействована архитектура кодера-декодера, типа нейронной сети, которая преобразует входные данные в вектор, используемый для прогнозирования конкретной информации.

Вся работа занимает менее чем 100 миллисекунд. Читать полностью »

Практически в любой современной компьютерной игре наличие какого-либо физического движка является обязательным условием. Развевающиеся на ветру флаги и кролики, бомбардируемые шарами, ― всё это требует надлежащего исполнения. И, конечно, пусть не все герои носят плащи… но те, кто носят, действительно нуждаются в наличии адекватной симуляции развевающейся ткани.

Как научить нейросеть воспроизводить игровую физику - 1

И всё же полное физическое моделирование таких взаимодействий часто становится невозможным, поскольку оно на порядки медленнее необходимого для игр в реальном времени. Данная статья предлагает новый метод моделирования, который может ускорить физические симуляции, сделать их в 300-5000 раз быстрее. Цель его состоит в том, чтобы попытаться научить имитации физических сил нейронную сеть.
Читать полностью »

Google Поиск на базе ИИ с технологией BERT теперь работает на русском языке - 1Поисковый запрос на русском языке, обработанный с применением технологии BERT, наиболее точно отвечает на запрос пользователя.

В официальном блоге Google Россия появилась информация, что теперь Google понимает поисковые запросы лучше, чем когда-либо. Таким образом, с 9 декабря 2019 года технология предварительного обучения анализу текста на естественном языке BERT (Bidirectional Encoder Representations from Transformers) теперь стала использоваться в поисковой выдаче Google Поиск и для запросов на русском языке.
Читать полностью »

Часть первая, дополненная.

Котаны, привет.
Я Саша и я балуюсь нейронками.

По просьбам трудящихся я, наконец, собрался с мыслями и решил запилить серию коротких и почти пошаговых инструкций.

Инструкций о том, как с нуля обучить и задеплоить свою нейросеть, заодно подружив ее с телеграм ботом.

Инструкций для чайников, вроде меня.

Сегодня мы выберем архитектуру нашей нейросети, проверим ее и соберем свой первый набор данных для обучения.

Выбор архитектуры

После относительно успешного запуска selfie2anime бота (использующего готовую модель UGATIT), мне захотелось сделать то же самое, но свое. Например, модель, превращающую ваши фото в комиксы.

Вот несколько примеров из моего photo2comicsbot, и мы с вами сделаем нечто подобное.
Читать полностью »

Ученые любят искать первое упоминание своей науки. К примеру, я видел статью, где всерьез утверждалось, что первые опыты по электрической стимуляции мозга были проведены в Древнем Риме, когда кого-то ударил током электрический угорь. Так или иначе, обычно, историю электрофизиологии принято отсчитывать примерно от опытов Луиджи Гальвани (XVIII век). В этом цикле статей мы попробуем рассказать небольшую часть того, что наука, узнала за последние 300 лет про электрическую активность мозга человека, про то, какие профиты из всего этого можно извлечь.

Что такое ЭЭГ и зачем она нужна - 1

Читать полностью »

Нейросеть научили распознавать речь по губам при помощи алгоритма распознавания записи голоса - 1
Hal 9000 прекрасно читал по губам, правда, по-английски

Нейросети сейчас умеют многое, и постепенно их обучают все большему количеству умений. На днях стало известно о том, что объединенная команда исследователей из США и Китая смогла обучить нейросеть распознавать речь по губам с высокой степенью точности.

Добиться этого удалось благодаря дополнительному элементу — алгоритму распознавания речи по аудиозаписям. Далее алгоритм использовался в качестве обучающей системы уже для второго алгоритма, который распознавал речь по видеозаписям.
Читать полностью »

Мы опубликовали первый русскоязычный туториал по краудсорсингу:

Это серия видео о том, как с помощью передачи простых заданий большому числу исполнителей собрать и разметить данные. Исполнителям можно поручить разные задания: найти что угодно в интернете, оценить дизайн, проверить или создать контент, поучаствовать в опросе, добраться до точки на карте и сфотографировать там что-нибудь. Тысячи людей будут одновременно выполнять перечисленные действия, формируя необходимый набор данных. Выпуск туториала — повод вновь поговорить о том, как краудсорсинг радикально меняет процессы в компаниях.
Читать полностью »

Ученые из Сеула создали новый алгоритм для создания дипфейков - 1
Иллюстрация: Hyperconnect

Исследователи из сеульской компании Hyperconnect создали алгоритм, который позволяет перенести мимику человека на лицо политика или другой знаменитости. Оригинальная статья была доступна на сайте Hyperconnect, но сейчас ссылка не работает. А препринт исследования опубликован на arxiv.org.
Читать полностью »

image

Уже полтора года я занимаю у себя в компании позицию основного ML-разработчика. Полгода управляю небольшой командой. Я накопил опыт, которым хочу поделиться. Делать это буду в формате топа заблуждений и потенциальных трудностей.
Читать полностью »

Применение зашифрованных данных для машинного обучения без их расшифровки - 1

Применение зашифрованных данных для машинного обучения без их расшифровки
В этой статье обсуждаются передовые криптографические методики. Это лишь обзор исследований, проводимых в Julia Computing. Не используйте приведённые здесь примеры в коммерческих приложениях. Всегда консультируйтесь с криптографами, прежде чем применять криптографию.

Здесь можно скачать пакет, реализующий всю магию, а здесь находится код, который рассматривается в статье.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js