Рубрика «машинное обучение» - 63

Как сделать из нейросети журналиста, или «Секреты сокращения текста на Хабре без лишних слов» - 1Только не удивляйтесь, но второй заголовок к этому посту сгенерировала нейросеть, а точнее алгоритм саммаризации. А что такое саммаризация?

Это одна из ключевых и классических задач Natural Language Processing (NLP). Она заключается в создании алгоритма, который принимает на вход текст и на выходе выдаёт его сокращённую версию. Причем в ней сохраняется корректная структура (соответствующая нормам языка) и правильно передается основная мысль текста.

Такие алгоритмы широко используются в индустрии. Например, они полезны для поисковых движков: с помощью сокращения текста можно легко понять, коррелирует ли основная мысль сайта или документа с поисковым запросом. Их применяют для поиска релевантной информации в большом потоке медиаданных и для отсеивания информационного мусора. Сокращение текста помогает в финансовых исследованиях, при анализе юридических договоров, аннотировании научных работ и многом другом. Кстати, алгоритм саммаризации сгенерировал и все подзаголовки для этого поста.

К моему удивлению, на Хабре оказалось совсем немного статей о саммаризации, поэтому я решил поделиться своими исследованиями и результатами в этом направлении. В этом году я участвовал в соревновательной дорожке на конференции «Диалог» и ставил эксперименты над генераторами заголовков для новостных заметок и для стихов с помощью нейронных сетей. В этом посте я вначале вкратце пробегусь по теоретической части саммаризации, а затем приведу примеры с генерацией заголовков, расскажу, какие трудности возникают у моделей при сокращении текста и как можно эти модели улучшить, чтобы добиться выдачи более качественных заголовков.
Читать полностью »

CIMON-2: (не)судный день, или как IBM Watson забрался выше облаков - 1

CIMON – Crew Interactive Mobile CompanioN (далее «Саймон») – научная разработка аэрокосмического агентства Airbus и IBM, спонсированная германским центром авиации и космонавтики DLR. В прошлом году его впервые испытали «в бою» на МКС, а в этом месяце начали испытание второй версии помощника. Так как нам интересно все, что связано с высокотехнологичными и прорывными коммуникациями – например, мы уже писал про работу с IBM Watson – то мы не смогли пройти мимо этой новости и подготовили перевод-компиляцию из нескольких зарубежных материалов, чтобы понять самим и сообщить вам – зачем астронавтам условная Алиса/Алекса/{you name it}? Под катом вас ждет хронология событий, цитаты сопричастных и небольшой вывод. Приятного чтения!
Читать полностью »

Привет! Отфильтровав для вас большое количество источников и подписок, сегодня собрал все наиболее значимые новости из мира будущего, машинного обучения, роботов и искусственного интеллекта за ноябрь. Не забудьте поделиться с коллегами или просто с теми, кому интересны такие новости.

Для тех, кто не читал дайджест за октябрь, можете прочесть его здесь.

Итак, а теперь дайджест за ноябрь:

1. MIT разработал новый тип робота, который может расти как растение когда ему требуется дополнительная досягаемость.

image Читать полностью »

image

Nvidia создала AI-систему DIB-R (differentiable interpolation-based renderer), которая построена на основе ML-фреймворка PyTorch. Система способна преобразовывать двухмерные изображения в трехмерные объекты.

DIB-R обрабатывает картинку, а затем преобразует ее в высокоточную 3D-модель. Учитываются формы, текстура, цвета и освещение объекта. При этом задействована архитектура кодера-декодера, типа нейронной сети, которая преобразует входные данные в вектор, используемый для прогнозирования конкретной информации.

Вся работа занимает менее чем 100 миллисекунд. Читать полностью »

Практически в любой современной компьютерной игре наличие какого-либо физического движка является обязательным условием. Развевающиеся на ветру флаги и кролики, бомбардируемые шарами, ― всё это требует надлежащего исполнения. И, конечно, пусть не все герои носят плащи… но те, кто носят, действительно нуждаются в наличии адекватной симуляции развевающейся ткани.

Как научить нейросеть воспроизводить игровую физику - 1

И всё же полное физическое моделирование таких взаимодействий часто становится невозможным, поскольку оно на порядки медленнее необходимого для игр в реальном времени. Данная статья предлагает новый метод моделирования, который может ускорить физические симуляции, сделать их в 300-5000 раз быстрее. Цель его состоит в том, чтобы попытаться научить имитации физических сил нейронную сеть.
Читать полностью »

Google Поиск на базе ИИ с технологией BERT теперь работает на русском языке - 1Поисковый запрос на русском языке, обработанный с применением технологии BERT, наиболее точно отвечает на запрос пользователя.

В официальном блоге Google Россия появилась информация, что теперь Google понимает поисковые запросы лучше, чем когда-либо. Таким образом, с 9 декабря 2019 года технология предварительного обучения анализу текста на естественном языке BERT (Bidirectional Encoder Representations from Transformers) теперь стала использоваться в поисковой выдаче Google Поиск и для запросов на русском языке.
Читать полностью »

Часть первая, дополненная.

Котаны, привет.
Я Саша и я балуюсь нейронками.

По просьбам трудящихся я, наконец, собрался с мыслями и решил запилить серию коротких и почти пошаговых инструкций.

Инструкций о том, как с нуля обучить и задеплоить свою нейросеть, заодно подружив ее с телеграм ботом.

Инструкций для чайников, вроде меня.

Сегодня мы выберем архитектуру нашей нейросети, проверим ее и соберем свой первый набор данных для обучения.

Выбор архитектуры

После относительно успешного запуска selfie2anime бота (использующего готовую модель UGATIT), мне захотелось сделать то же самое, но свое. Например, модель, превращающую ваши фото в комиксы.

Вот несколько примеров из моего photo2comicsbot, и мы с вами сделаем нечто подобное.
Читать полностью »

Ученые любят искать первое упоминание своей науки. К примеру, я видел статью, где всерьез утверждалось, что первые опыты по электрической стимуляции мозга были проведены в Древнем Риме, когда кого-то ударил током электрический угорь. Так или иначе, обычно, историю электрофизиологии принято отсчитывать примерно от опытов Луиджи Гальвани (XVIII век). В этом цикле статей мы попробуем рассказать небольшую часть того, что наука, узнала за последние 300 лет про электрическую активность мозга человека, про то, какие профиты из всего этого можно извлечь.

Что такое ЭЭГ и зачем она нужна - 1

Читать полностью »

Нейросеть научили распознавать речь по губам при помощи алгоритма распознавания записи голоса - 1
Hal 9000 прекрасно читал по губам, правда, по-английски

Нейросети сейчас умеют многое, и постепенно их обучают все большему количеству умений. На днях стало известно о том, что объединенная команда исследователей из США и Китая смогла обучить нейросеть распознавать речь по губам с высокой степенью точности.

Добиться этого удалось благодаря дополнительному элементу — алгоритму распознавания речи по аудиозаписям. Далее алгоритм использовался в качестве обучающей системы уже для второго алгоритма, который распознавал речь по видеозаписям.
Читать полностью »

Мы опубликовали первый русскоязычный туториал по краудсорсингу:

Это серия видео о том, как с помощью передачи простых заданий большому числу исполнителей собрать и разметить данные. Исполнителям можно поручить разные задания: найти что угодно в интернете, оценить дизайн, проверить или создать контент, поучаствовать в опросе, добраться до точки на карте и сфотографировать там что-нибудь. Тысячи людей будут одновременно выполнять перечисленные действия, формируя необходимый набор данных. Выпуск туториала — повод вновь поговорить о том, как краудсорсинг радикально меняет процессы в компаниях.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js