Рубрика «машинное обучение» - 61

Нейросети выросли от состояния академической диковинки до массивной индустрии

Как работают нейронные сети и почему они стали приносить большие деньги - 1

За последнее десятилетие компьютера заметно улучшили свои возможности в области понимания окружающего мира. ПО для фототехники автоматически распознаёт лица людей. Смартфоны преобразуют речь в текст. Робомобили распознают объекты на дороге и избегают столкновения с ними.

В основе всех этих прорывов лежит технология работы искусственного интеллекта (ИИ) под названием глубокое обучение (ГО). ГО основывается на нейросетях (НС), структурах данных, вдохновлённых сетями, составленными из биологических нейронов. НС организуются послойно, и входы одного слоя соединены с выходами соседнего.

Специалисты по информатике экспериментируют с НС с 1950-х годов. Однако основы сегодняшней обширной индустрии ГО заложили два крупных прорыва – один произошёл в 1986 году, второй – в 2012. Прорыв 2012 года – революция ГО – была связана с открытием того, что использование НС с большим количеством слоёв позволит нам значительно улучшить их эффективность. Открытию способствовали растущие объёмы как данных, так и вычислительных мощностей.
Читать полностью »

image

Перед тобой снова задача детектирования объектов. Приоритет — скорость работы при приемлемой точности. Берешь архитектуру YOLOv3 и дообучаешь. Точность(mAp75) больше 0.95. Но скорость прогона всё еще низкая. Черт.

Сегодня обойдём стороной квантизацию. А под катом рассмотрим Model Pruning — обрезание избыточных частей сети для ускорения Inference без потери точности. Наглядно — откуда, сколько и как можно вырезать. Разберем, как сделать это вручную и где можно автоматизировать. В конце — репозиторий на keras.

Читать полностью »

Обычно в преддверии Нового года мы обновляем наш датасет по Открытой семантике. В этом году было сделано много работы, но она не подошла к логическому завершению и мы продолжим её в следующем году. Сейчас же мы хотим рассказать о не менее важном открытом датасете, вызвавшим живой интерес на ряде лингвистических конференций этого года, как по стороны исследователей, так и со стороны представителей индустрии. Речь в посте пойдёт об открытом тональном словаре русского языка.

Новогодний датасет 2019: открытый тональный словарь русского языка - 1
Читать полностью »

Роботу иногда нужно что-то хватать. Вот и без глаз робот как без рук. В прямом смысле. Ведь не зная где лежит вкусняшка, робот не сможет дотянуться до ней своими роботизированными рукам. Или другими манипуляторами.

В данной статье мы разберемся, как откалибровать робота, чтобы иметь возможность переходить между Системой Координат робота и СК 3D-камеры.
Добавляем роботу глаза - 1
Читать полностью »

Главные технологии десятилетия по версии Хабра - 1

Команда Хабра составила рейтинг из 10 технологий и устройств, которые изменили мир и повлияли на нашу жизнь. За пределами первой десятки остались еще около 30 крутых вещей — о них коротко в конце поста. Но самое главное — нам хочется, чтобы в составлении рейтинга поучаствовало всё сообщество. Мы предлагаем оценить эти 10 технологий так, как хотите именно вы. Вдруг вы считаете, что машинное обучение куда сильнее повлияло на мир, чем экономика совместного потребления? Голосуйте — ваш выбор будет учтен в общем рейтинге.Читать полностью »

7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х - 1

Новый год все ближе, скоро закончатся 2010-е годы, подарившие миру нашумевший ренессанс нейросетей. Мне не давала покоя и лишала сна простая мысль: «Как можно ретроспективно прикинуть скорость развития нейросетей?» Ибо «Тот, кто знает прошлое — тот знает и будущее». Как быстро «взлетали» разные алгоритмы? Как вообще можно оценить скорость прогресса в этой области и прикинуть скорость прогресса в следующем десятилетии? 

7 лет хайпа нейросетей в графиках и вдохновляющие перспективы Deep Learning 2020-х - 2

Понятно, что можно примерно посчитать количество статей по разным областям. Метод не идеальный, нужно учитывать подобласти, но в целом можно пробовать. Дарю идею, по Google Scholar (BatchNorm) это вполне реально! Можно считать новые датасеты, можно новые курсы. Ваш же покорный слуга, перебрав несколько вариантов, остановился на Google Trends (BatchNorm)

Мы с коллегами взяли запросы основных технологий ML/DL, например, Batch Normalization, как на картинке выше, точкой добавили дату публикации статьи и получили вполне себе график взлета популярности темы. Но не у всех тем путь усыпан розами взлет такой явный и красивый, как у батчнорма. Некоторые термины, например регуляризацию или skip connections, вообще не получилось построить из-за зашумленности данных. Но в целом тренды собрать удалось.

Кому интересно, что получилось — добро пожаловать под кат!
Читать полностью »

Встраиваемые системы машинного обучения на базе Nvidia Jetson - 1

Аппаратные платформы для машинного обучения быстро развиваются и дешевеют. Модули Nvidia Jetson позволяют создавать эффективные и доступные решения для Edge Computing. Сегодня стало возможным уместить высокопроизводительную систему с 256 графическими ядрами Nvidia Cuda в компьютер, умещающийся на ладони.

В статье мы разберем что такое Edge Computing, расскажем о модулях Nvidia Jetson и покажем решения, которые нам удалось разработать на их основе.
Читать полностью »

Синопсис

Раскраска фильмов до этого года стоила сотни тысяч долларов, требовала участия массы специалистов и занимала много времени. Теперь всё изменилось. Развитие проекта Deoldify дошло до такого состояния, что результаты его работы можно комфортно смотреть, расслабив фейспалм. Из текста вы узнаете подробности успешного эксперимента по оцветнению фильма без денежных затрат, завершенного за несколько недель силами одного человека.

верни картинку взад
Читать полностью »

image

Журналисты The Guardian, которая одной из первых раскрыла использование данных десятков миллионов пользователей Facebook британской компанией Cambridge Analytica, не могли добиться интервью с главой соцсети Марком Цукербергом. В итоге они пообщались с нейросетью Цукербот, которую обучили отвечать на вопросы с помощью интервью и публичных выступлений главы Facebook.

Алгоритм создала студия Botnik. Цукербота обучали с применением интервью, речей и публикаций в блогах Цукерберга за последние три года. В итоге нейросеть может оперировать 200 тысячами слов. The Guardian готовила вопросы для интервью совместно с Observer. Читать полностью »

Какой стартап мне запустить завтра? - 1
«Космические корабли бороздят просторы Вселенной» — Armada by tkdrobert

Меня регулярно спрашивают: «вот ты о стартапах пишешь, но их повторять уже поздно, а что сейчас запускать надо, где новый Facebook?» Если бы я знал точный ответ, то никому бы не сказал, а сам сделал, но направление поисков достаточно прозрачно, о нем можно говорить открыто.

Всё уже изобретено до нас

Все гиперуспешные стартапы основаны на очень простых идеях. Google вырос за счет того, что учитывал в ранжировании ссылки. Booking.com в едином интерфейсе показывает все отели мира. Tinder позволяет предложить знакомство одним свайпом. Uber — это заказ такси в мобильном приложении. Сейчас в этих компаниях работают десятки тысяч сотрудников, они каждый день усложняют продукт и добавляют новые сервисы, но тогда, на старте, всё было очень просто.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js