Рубрика «машинное обучение» - 60

День защиты персональных данных, Минск, 2019 год. Организатор: правозащитная организация Human Constanta.

Ведущий (далее – В): – Артур Хачуян занимается… Можно сказать «на тёмной стороне» в контексте нашей конференции?

Артур Хачуян (далее – АХ): – На стороне корпораций – да.

В: – Он собирает ваши данные, продаёт их корпорациям.

АХ: – На самом деле нет…

В: – И он как раз расскажет, как корпорации могут использовать ваши данные, что происходит с данными, когда они попадают в онлайн. Он не будет, наверное, рассказывать, что с этим делать. Мы подумаем дальше…

«На чём корпорации вертели вашу приватность», Артур Хачуян (Tazeros Global) - 1

АХ: – Расскажу, расскажу. На самом деле долго рассказывать не буду, но на предыдущем мероприятии мне представили человека, которому «Фейсбук» даже аккаунт собаки заблокировал.
Всем привет! Меня зовут Артур. Я действительно занимаюсь обработкой и сбором данных. Конечно же, я не продают никому никакие персональные данные в открытом доступе. Шучу. Моя сфера деятельности – это извлечение знаний из данных, находящихся в открытых источниках. Когда что-то юридически является не персональными данными, но из этого можно извлечь знания и сделать их такими же по значимости, как если бы эти данные были получены из персональных данных. Ничего на самом деле страшного рассказывать не буду. Здесь, правда, про Россию, но про Белоруссию у меня тоже есть цифры.Читать полностью »

Исследователи хотят использовать игру Mega Man 2 для обучения нейросетей - 1

Источник: Nintendo

Разработчики из Бразилии, Нидерландов и Великобритании создали игровую соревновательную платформу EvoMan, которая имитирует игру Mega Man 2. Платформа разработана для обучения нейросетей. С её помощью исследователи проверят способность искусственного интеллекта не только выучить правила игры, но и адаптировать своё поведение под каждого из игровых боссов. Читать полностью »

Артур Хачуян — известный российский специалист по обработке больших данных, основатель компании Social Data Hub (сейчас Tazeros Global). Партнёр НИУ ВШЭ. Подготовил и представил совместно с НИУ ВШЭ законопроект по Big Data в Совете Федерации Выступал в институте Кюри в Париже, СПБГУ, ФУ при Правительстве РФ, на Red Apple, International OpenDataDay, RIW 2016, AlfaFuturePeople.

Лекция записана на open-air фестивале «Гик-пикник» в Москве в 2019 году.

Артур Хачуян: искусственный интеллект в маркетинге - 1

Артур Хачуян (далее – АХ): – Если из огромного количества отраслей – из медицины, из строительства, из чего-то, чего-то выбирать то, где технология больших данных, машинного обучения, глубинного обучения наиболее часто используется, то это, наверное, маркетинг. Потому что последние где-то года три всё, что окружает нас в каких-то рекламных коммуникациях, сейчас завязано именно на анализ данных и именно на том, что можно назвать искусственным интеллектом. Поэтому сегодня буду рассказывать вам про это из такой, очень отдалённой истории…Читать полностью »

Что внутри у Google Coral Edge TPU: тесты на скорость и разбор устройства - 1

В 2019 году Google, наконец, выпустила оборудование с TPU под брендом Coral, которое можно купить. Однако не такие мощные облачные сети для обучения типа BigGAN со своими 100 петафлопс/с, и даже не такие, как самые дешёвые 180 TFlop/s v2 TPU, которые можно арендовать за $4,5 в час. Эти TPU-устройства должны работать «на краю», то есть, обеспечивать возможность внедрения решений с глубинным обучением для малых устройств без доступа к интернету. Насколько же хороши будут те TPU, которые мы сможем купить?
Читать полностью »

Статья состоит из двух частей:

  1. Краткое описание некоторых архитектур сетей по обнаружению объектов на изображении и сегментации изображений с самыми понятными для меня ссылками на ресурсы. Старался выбирать видео пояснения и желательно на русском языке.
  2. Вторая часть состоит в попытке осознать направление развития архитектур нейронных сетей. И технологий на их основе.

Понимать архитектуры нейросетей непросто

Рисунок 1 – Понимать архитектуры нейросетей непросто

Все началось с того, что сделал два демонстрационных приложения по классификации и обнаружению объектов на телефоне Android:

  • Back-end demo, когда данные обрабатываются на сервере и передаются на телефон. Классификация изображений (image classification) трех типов медведей: бурого, черного и плюшевого.
  • Front-end demo, когда данные обрабатываются на самом телефоне. Обнаружение объектов (object detection) трех типов: фундук, инжир и финик.

Читать полностью »

Машинное обучение и глубокие нейросети способны распознать и анализировать «язык поведения» животных способами, находящимися за пределами человеческих возможностей

Учёные автоматизируют исследования поведения животных, чтобы декодировать работу мозга - 1
Для отслеживания движений животных в природной среде учёные всё чаще обращаются к методам машинного обучения (МО). На этом видео алгоритм DeepPoseKit отслеживает движение и ориентацию пустынной саранчи в замкнутом пространстве, чтобы снабдить исследователей данными по совместному поведению насекомых.

В попытках понять, что происходит в головах у животных, отправляли нейробиологов по неожиданным путям: от подглядывания непосредственно в живой мозг до управления нейронами при помощи световых вспышек, создания сложных устройств и виртуальных окружений.

В 2013 году это привело нейробиолога Боба Датту вместе с коллегами из Гарвардской медицинской школы в супермаркет Best Buy, находящийся на той же улице, что и их лаборатория.
Читать полностью »

Создавая это видео, я научился многому

Технология дипфейков использует глубокие нейронные сети для убедительной замены на видео одного лица другим. У этой технологии есть очевидный потенциал для злонамеренного использования, и она становится всё более распространённой. По поводу социальных и политических последствий этого тренда было написано уже много хороших статей.

И это не одна из них. Вместо этого я сам поближе ознакомлюсь с этой технологией: как работает ПО для дипфейков? Насколько сложно их создавать, и насколько хорошими получаются результаты?

Я решил, что лучше всего ответить на эти вопросы, создав собственное дипфейк-видео. Редакция выделила мне сколько дней на то, чтобы поиграться с ПО и $1000 на оплату облачных вычислений. Через пару недель я получил результат, представленный на видео в начале статьи. Начал я с видео Марка Цукерберга, выступающего перед конгрессом, и заменил его лицо на лейтенант-командера Дейту (Брента Спайнера) из фильма «Звёздный путь: следующее поколение». Всего было потрачено $552.
Читать полностью »

Я бы хотел получить такое письмо три года назад, когда только начинал изучать Data Science (DS). Чтобы там были необходимые ссылки на полезные материалы. Статья не претендует на полноту охвата необъятной области DS. Однако для начинающего специалиста будет полезна.

Нейронные сети – это...

Читать полностью »

Пока весь мир, вместо того, чтобы нарезать салаты готовиться к встрече Нового года, следит за развитием ситуации с nginx, мы решили не усугублять и не готовить серьезную научную статью, не шокировать технологиями наступившего будущего и не грузить очень хитрым алгоритмом. Мы тоже пользуемся nginx и надеемся, что и с его создателями и с ним все будет хорошо. И нам (да и не только нам) важно, чтобы ситуация разрешилась не как подарок Деда Мороза, а как естественный ход событий.
Т — значит творчество - 1
Читать полностью »

Это мой первый пост об оптическом распознавании текста (OCR) с использованием Tesseract. Tesserast это очень популярная open source библиотека для OCR поддерживаемая Google, которая дает высокие результаты точности и поддерживает более 100 языков. В этом посте я расскажу как можно работать со стандартным словарем для языковой модели Tesseract и настроить его под свои нужды. Кому интересно, прошу под кат.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js