Рубрика «машинное обучение» - 57

Привет всем, кто выбрал путь ML-самурая!

Введение:

В данной статье рассмотрим метод опорных векторов (англ. SVM, Support Vector Machine) для задачи классификации. Будет представлена основная идея алгоритма, вывод настройки его весов и разобрана простая реализация своими руками. На примере датасета $Iris$ будет продемонстрирована работа написанного алгоритма с линейно разделимыми/неразделимыми данными в пространстве $R^2$ и визуализация обучения/прогноза. Дополнительно будут озвучены плюсы и минусы алгоритма, его модификации.

image
Рисунок 1. Фото цветка ириса из открытых источников

Читать полностью »

Мы всегда хотим писать код быстро, но за это приходится платить. На обычных высокоуровневых гибких языках можно быстро разрабатывать программы, но после запуска они работают медленно. Например, чудовищно медленно cчитать что-то тяжелое на чистом Python. Си-подобные языки работают гораздо быстрее, но в них легче наделать ошибок, поиск которых сведет весь выигрыш в скорости на нет.

Обычно эта дилемма решается так: сначала пишут прототип на чем-то гибком, например, на Python или R, а потом переписывают на C/C++ или Fortran. Но этот цикл слишком длинный, можно ли обойтись без этого?

А что, если без Python? Julia для машинного обучения и вообще - 1

Возможно, решение есть. Julia — высокоуровневый и гибкий, но при этом быстрый язык программирования. В Julia есть множественная диспетчеризация, встроенный умный компилятор и инструменты метапрограммирования. Подробнее о том, что есть в Julia, расскажет Глеб Ивашкевич (phtRaveller) — основатель datarythmics, которая занимается разработкой систем машинного обучения для промышленности и других отраслей, в прошлом физик.

Глеб объяснит, зачем нужны новые языки и почему иногда Python не хватает. Расскажет, что в Julia интересного, о ее сильных и слабых сторонах, сравнит с другими языками, и покажет, какая у языка перспектива в машинном обучении и вычислениях вообще.

Дисклеймер. Здесь не будет разбора синтаксиса. читатели опытные разработчики, поэтому нет смысла показывать, как написать цикл, например.
Читать полностью »

Новое исследование Google на первый взгляд показывает многообещающие возможности здравоохранения, которому помогает ИИ. На деле же оно демонстрирует надвигающуюся угрозу.

Искусственный интеллект ещё сильнее ухудшает плохую медицину - 1

Исследователи из Google попали в заголовки в начале 2020 года со своим исследованием, где заявили, что их система искусственного интеллекта (ИИ) способна лучше людей-экспертов находить рак груди по маммограммам. Звучало это, как большая победа, и ещё один пример того, как ИИ вскорости изменит наше здравоохранение: находим больше опухолей! Меньше ложных положительных выводов! Улучшенный и более дешёвый способ обеспечения качественных медицинских услуг!
Читать полностью »

Визуальная теория информации (часть 2) - 1

Вторая часть перевода лонгрида посвященного визуализации концепций из теории информации. Во второй части рассматриваются энтропия, перекрестная энтропия, дивергенция Кульбака-Лейблера, взаимная информация и дробные биты. Все концепции снабжены прекрасными визуальными объяснениями.

Для полноты восприятия, перед чтением второй части, рекомендую ознакомиться с первой.

Читать полностью »

Визуальная теория информации (часть 1) - 1

Перевод интересного лонгрида посвященного визуализации концепций из теории информации. В первой части мы посмотрим как отобразить графически вероятностные распределения, их взаимодействие и условные вероятности. Далее разберемся с кодами фиксированной и переменной длины, посмотрим как строится оптимальный код и почему он такой. В качестве дополнения визуально разбирается статистический парадокс Симпсона.

Теория информации дает нам точный язык для описания многих вещей. Сколько во мне неопределенности? Как много знание ответа на вопрос А говорит мне об ответе на вопрос Б? Насколько похож один набор убеждений на другой? У меня были неформальные версии этих идей, когда я был маленьким ребенком, но теория информации кристаллизует их в точные, сильные идеи. Эти идеи имеют огромное разнообразие применений, от сжатия данных до квантовой физики, машинного обучения и обширных областей между ними.

К сожалению, теория информации может казаться пугающей. Я не думаю, что есть какая-то причина для этого. Фактически, многие ключевые идеи могут быть объяснены визуально!

Читать полностью »

Хорошая новость в том, что я обнаружил много проблем. Плохая новость в том, что вы одна из них.

Большинство менеджеров и маркетологов называют искусственным интеллектом всё подряд: пылесосы, игрушечных роботов-трансформеров и даже подбор мобильных тарифов. Это в тренде и хорошо продаётся, только одна проблема — даже учёные не рискуют говорить, что создали ИИ.

Решили разобраться в определениях: можем ли мы вообще говорить об искусственном интеллекте, чем он отличается от машинного обучения и справедливо ли презрительно поднимать брови, когда мы видим очередную рекламу с ИИ.
Читать полностью »

image
Больно только в первый раз!

Всем привет! Дорогие друзья, в этой статье я хочу поделиться своим опытом использования TensorRT, RetinaNet на базе репозитория github.com/aidonchuk/retinanet-examples (это форк официальной репы от nvidia, который позволит начать использовать в продакшен оптимизированные модели в кратчайшие сроки). Пролистывая сообщения в каналах сообщества ods.ai, я сталкиваюсь с вопросами по использованию TensorRT, и в основном вопросы повторяются, поэтому я решил написать как можно более полное руководство по использованию быстрого инференса на основе TensorRT, RetinaNet, Unet и docker.
Читать полностью »

Система безопасности для пешеходов распознаёт находящиеся неподалёку автомобили на основе производимых ими звуков

ИИ-система предупреждает пешеходов в наушниках о приближающемся автомобиле - 1

Как пешеходу в наушниках отключиться от окружающего его хаотичного мира, не поступаясь собственной безопасностью? Одно из решений может дать эквивалент системы предупреждения столкновений для пешеходов, направленный на обнаружение находящихся неподалёку автомобилей исключительно на основе звуков.

Умная система работы с наушниками использует алгоритмы машинного обучения для интерпретации звуков и предупреждения пешеходов о расположении автомобилей, находящихся на расстоянии до 60 м от них. Прототип Pedestrian Audio Wearable System (PAWS) [носимой звуковой системы для пешеходов] может определять местоположение, но не траекторию находящегося поблизости автомобиля — не говоря уже о траектории нескольких машин. И всё-таки это первый шаг к созданию вероятной системы безопасности, направленной в первую очередь на пешеходов, учитывая, что количество пешеходов, погибших на дорогах США в 2018 году достигло максимума за три последних десятилетия [в России число погибших в ДТП падает уже несколько лет подряд на фоне роста автопарка / прим. перев.].
Читать полностью »

Бьорк и Microsoft создали музыкальный проект, в котором ИИ изменяет мелодию в зависимости от всего вокруг - 1

Исландская певица Бьорк вместе с компанией Microsoft создала необычный музыкальный проект под названием Kórsafn (хоровые архивы). Искусственный интеллект от Microsoft воспроизводит в непрерывном режиме в холле одного из отелей (Sister City) в Нью-Йорке отрывки из разных хоровых аранжировок произведений Бьорк за семнадцать лет. Получаемая в итоге музыкальная композиция все время меняется — ИИ постоянно корректирует подбор аранжировок в зависимости от данных с видеокамер, расположенных на крыше отеля.
Читать полностью »

Предыдущий выпуск

Новости ML, новые технологии, идеи по применению и гипотезы.

Nvidia GauGan

Изображение сделано в Nvidia GauGan. Видео, статья и исходный код.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js