Рубрика «машинное обучение» - 54

Всю свою сознательную жизнь, я был энергетиком (нет, сейчас речь не идет о напитке с сомнительными свойствами).

Я никогда особо не интересовался миром информационных технологий, да и даже матрицы я вряд ли на листочке смогу перемножить. Да и не нужно мне это было никогда, чтобы вы понимали немного о специфике моей работы, могу поделиться замечательной историей. Попросил я как-то моих коллег сделать работу в Excel – таблице, прошла половина рабочего дня, подхожу к ним, а они сидят и суммируют данные на калькуляторе, да- да, на обычном таком черном калькуляторе с кнопками. Ну и о каких нейронных сетях может идти речь после этого?.. Поэтому никаких особых предпосылок к погружению в мир IT у меня никогда не было. Но, как говорится «хорошо там, где нас нет», мои друзья прожужжали мне все уши о дополненной реальности, о нейронных сетях, о языках программирования (в основном про Python).

На словах оно выглядело весьма просто, и я решил почему бы не освоить это магическое искусство, чтобы применить в своей сфере деятельности.

В этой статье я опущу мои попытки освоить азы Python и поделюсь с вами своим впечатлением от бесплатного курса по TensorFlow от Udacity.

Как энергетик изучал нейросети и обзор бесплатного курса «Udacity: Intro to TensorFlow for Deep Learning» - 1
Читать полностью »

Всем привет. С некоторым запозданием я решил опубликовать эту статью. Каждый год я стараюсь подвести итоги произошедшего в области обработки естественного языка (natural language processing). Не стал исключением и этот год.

BERTs, BERTs are everywhere

Начнем по порядку. Если вы не уехали в глухую Сибирскую тайгу или отпуск на Гоа на последние полтора года, то вы наверняка слышали слово BERT. Появившись в самом конце 2018-ого за прошедшее время эта модель завоевала такую популярность, что в самый раз будет вот такая картинка:

Natural Language Processing. Итоги 2019 и тренды на 2020 - 1
Читать полностью »

Регионы России — это не просто границы на карте. В каждом регионе есть свои культурные традиции, во многих — свои языки. Машинный перевод мог бы помочь сохранять и применять эти языки — в частности, публиковать статьи в Википедии. Но как быть, если данных для обучения машинного интеллекта недостаточно?

Сегодня мы расскажем о нашем подходе на примере чувашского языка, которому мы обучили Яндекс.Переводчик. По данным последней переписи населения, этот язык считают родным более миллиона человек.

Встречайте чувашский язык в Яндекс.Переводчике: как мы решаем главную проблему машинного перевода - 1

Читать полностью »

Исследовательская работа в области машинного обучения постепенно покидает пределы университетских лабораторий и из научной дисциплины становится прикладной. Тем не менее, все еще сложно находить актуальные статьи, которые написаны на понятном языке и без миллиарда сносок.

Этот пост содержит список англоязычных материалов за январь, которые написаны без лишнего академизма. В них вы найдете примеры кода и ссылки на непустые репозитории. Упомянутые технологии лежат в открытом доступе и не требуют сверхмощного железа для тестирования.
Читать полностью »

Задача обнаружения объектов на изображении сегодня является одной из ведущих в области машинного зрения. Ее суть заключается в том, чтобы не только классифицировать объект на снимке, но и указать его точное местоположение.
Результаты обнаружения объекта могут быть дополнены информацией о том, насколько далеко расположен данный объект. Задачу измерения расстояния можно решить с помощью камеры глубины Intel RealSense D435, измеряющей глубину в каждой точке.
В данной статье мы решим задачу измерения расстояния до объекта в режиме реального времени с помощью библиотеки OpenCV и технологии RealSense.
image
Читать полностью »

Статья является кратким обзором о сертификации по программе IBM Data Science Professional Certificate.

Будучи новичком в Python, мне пришлось столкнуться с реализацией задач:

  • Загрузка и парсинг HTML таблиц
  • Очистка загруженных данных
  • Поиск географических координат по адресу объекта
  • Загрузка и обработка GEOJSON
  • Построение интерактивных тепловых карт (heat map)
  • Построение интерактивных фоновых картограмм (choropleth map)
  • Преобразование географических координат между сферической WGS84 и картезианский системой координат UTM
  • Представление пространственных географических объектов в виде гексагональная сетки окружностей
  • Поиск географических объектов, расположенных на определенном расстоянии от точки
  • Привязка географических объектов к полигонам сложной формы на поверхности
  • Описательные статистический анализ
  • Анализ категорийных переменных и визуализация результатов
  • Корреляционный анализ и визуализация результатов
  • Сегментация с использованием k-Mean кластеризации и elbow метода
  • Анализ и визуализация кластеров

Читать полностью »

В прошлой статье мы рассматривали механизм внимания (attention) – чрезвычайно распространенный метод в современных моделях глубокого обучения, позволяющий улучшить показатели эффективности приложений нейронного машинного перевода. В данной статье мы рассмотрим Трансформер (Transformer) – модель, которая использует механизм внимания для повышения скорости обучения. Более того, для ряда задач Трансформеры превосходят модель нейронного машинного перевода от Google. Однако самое большое преимущество Трансформеров заключается в их высокой эффективности в условиях параллелизации (parallelization). Даже Google Cloud рекомендует использовать Трансформер в качестве модели при работе на Cloud TPU. Попробуем разобраться, из чего состоит модель и какие функции выполняет.

Впервые модель Трансформера была предложена в статье Attention is All You Need. Реализация на TensorFlow доступна как часть пакета Tensor2Tensor, кроме того, группа NLP-исследователей из Гарварда создали гид-аннотацию статьи с реализацией на PyTorch. В данном же руководстве мы попробуем максимально просто и последовательно изложить основные идеи и понятия, что, надеемся, поможет людям, не обладающим глубоким знанием предметной области, понять данную модель.

Читать полностью »

Всем привет!

Вступление

Меня зовут Алексей Клоков, я хочу рассказать о запуске классного курса по обработке естественного языка (Natural Language Processing), который очередной раз запускают физтехи из проекта DeepPavlov – открытой библиотеки для разговорного искусственного интеллекта, которую разрабатывают в лаборатории нейронных систем и глубокого обучения МФТИ. Благодарю их и Moryshka за разрешение осветить эту тему на Хабре в нашем ods-блоге. Итак, поехали!

Читать полностью »

Технологии глубокого обучения за короткий срок прошли большой путь развития — от простых нейронных сетей до достаточно сложных архитектур. Для поддержки быстрого распространения этих технологий были разработаны различные библиотеки и платформы глубокого обучения. Одна из основных целей подобных библиотек заключается в том, чтобы предоставить разработчикам простые интерфейсы, позволяющие создавать и обучать нейросетевые модели. Подобные библиотеки позволяют своим пользователям обращать больше внимания на решаемые задачи, а не на тонкости реализации моделей. Для этого может понадобиться скрывать реализацию базовых механизмов за несколькими уровнями абстракции. А это, в свою очередь усложняет понимание базовых принципов, на которых основаны библиотеки глубокого обучения.

О реализации библиотеки для глубокого обучения на Python - 1

Статья, перевод которой мы публикуем, нацелена на разбор особенностей устройства низкоуровневых строительных блоков библиотек глубокого обучения. Сначала мы кратко поговорим о сущности глубокого обучения. Это позволит нам понять функциональные требования к соответствующему программному обеспечению. Затем мы рассмотрим разработку простой, но работающей библиотеки глубокого обучения на Python с использованием NumPy. Эта библиотека способна обеспечить сквозное обучение простых нейросетевых моделей. По ходу дела мы поговорим о различных компонентах фреймворков глубокого обучения. Библиотека, которую мы будем рассматривать, совсем невелика, меньше 100 строк кода. А это значит, что с ней будет достаточно просто разобраться. Полный код проекта, которым мы будем заниматься, можно найти здесь.
Читать полностью »

Фармацевты и программисты из компаний Sumitomo Dainippon Pharma и Exscientia подбросили дров в костер спора «где должна заканчиваться самостоятельность машины и начинаться контроль в ручном режиме»: 30 января на официальном сайте Exscientia был опубликован пресс-релиз, в котором заявлено, что с помощью разработанного ими ИИ фармкомпания Sumitomo Dainippon Pharma определила формулу и синтезировала действующее вещество для лекарства против ОКР.

Японская фармкомпания приступает к испытаниям лекарства, синтезированного с помощью нейросети - 1

Конечно, маркетологи Exscientia называют свою разработку «Искусственным Интеллектом», но разработка нового лекарства велась с помощью обучающейся нейросети. Фактически, нейросеть определила формулу нового лекарства через перебор и анализ комбинаций известных действующих веществ. Сейчас разработка и синтез завершены, и SDP — компания-производитель лекарства — переходит к первой фазе клинических испытаний на животных.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js