Рубрика «машинное обучение» - 51

Я начну с революционного: когда мы внедряем Искусственные мозги C-Pilot в сельхозтехнику, мы немного уподобляемся Создателю. Мы Предмет превращаем в думающее и анализирующее Существо, то есть комбайн с Cognitive Agro Pilot начинает видеть и понимать, что происходит вокруг, а также принимать решения по дальнейшим действиям в рамках той производственной задачи, которая перед ним стоит. В каком-то смысле идет создание нового социального слоя тружеников села — слой агроботов с Искусственным Интеллектом C-Pilot, которые обдумывают и решают поставленные человеком агрозадачи.

По сути это зарождающийся слой существ, который надо массово и правильно учить. У человечества были тысячелетия на развитие эволюционного слоя сознания, у роботов это — месяцы. Но для этого надо создать необходимую среду, масштабную фабрику по обучению Искусственных мозгов и подготовки информации для них. В этой статье мы приоткроем тайны Cognitive Data Factory: комбайнa для сбора и переработки данных для агроотрасли.

То по каким учебникам и с какими учителями учатся Ваши дети имеет определяющее значение в их развитии и будущей карьере. Так и в автомотив отрасли — качественные данные и их правильная разметка имеют первостепенное значение для создателей ИИ для беспилотного транспорта и других высокоавтоматизированных систем управления. Cognitive Pilot учится через нашу уникальную Data Factory. Как это устроено внутри?

Как мы создаем Сognitive Agro Data Factory — самый большой нейронный университет в мире - 1
Читать полностью »

Снятся ли выключателям вопросы морали (и электроовцы)? - 1

Прямо сейчас в компьютерных сетях происходит революция: устройства все лучше оценивают происходящее вокруг себя, при этом анализируя данные локально, то есть «здесь и сейчас». Благодаря этому устройства могут предложить людям все бОльшую функциональность, не обращаясь к облаку. Но смогут ли в итоге выключатели освещения озаботится вопросами морали?
Читать полностью »

Радует, когда на диаграмме кроме новых созвездий находится нечто похожее на зависимость. В таком случае мы строим модель, которая хорошо объясняет связь между двумя переменными. Но исследователь должен понимать не только, как работать с данными, но и какая история из реального мира за ними лежит. В противном случае легко сделать ошибку. Расскажу о парадоксе Симпсона — одном из самых опасных примеров обманчивых данных, который может перевернуть связь с ног на голову.

Данные всех стран, не объединяйтесь - 1

Читать полностью »

Семейной историей мы с мужем занимаемся уже лет десять. Накопилась большая база черно-белых фотографий по каждому из сотен предков и их родственников. Самое важное на таких фото — это, конечно, лица людей. Чтобы делиться с роднёй и публиковать в интернете, хочется иметь эти фото в хорошем качестве, находить новые, интересные детали.

Революцией в этой сфере для нас в последние месяцы стало появление ряда программ и сервисов, которые в совокупности и при правильном использовании позволяют любому человеку легко ретушировать и расцвечивать старые семейные фото. Результат — реалистичные, чёткие, красивые кадры из старых, зернистых, нерезких и часто поврежденных фото. В большинстве случаев не требуется использование фотошопа.

Хотим поделиться со всеми, кому интересно это ремесло, теми программами, которые мы открыли, а также некоторыми способами их комбинирования в правильном порядке. Речь пойдет об онлайн-приложении Remini, сервисе «Компьютерное зрение от почты mail.ru», приложении Google Snapseed, а также о ряде других штуковин. 

Как живые: наш опыт редактирования старых фотографий - 1

Читать полностью »

Как не пополнить ряды стремных специалистов, если ты Data Scientist - 1


Хабра-сообщество провело еще одно интервью в нашем образовательном проекте: прямых эфирах c ребятами из IT, которые отвечают на ваши вопросы в формате живого общения.

Наш проект — попытка создать полноценный набор гайдов и рекомендаций для успешной жизни разработчика: как построить карьеру, получить оффер мечты, привлечь инвестиции в стартап, не тухнуть на скучных проектах, вырасти в своем деле и по пути купить домик у моря.

В начале недели наши вопросы отвечал Борис Янгель — ML-инженер Яндекса, который участвовал в создании мозгов «Алисы», а теперь делает беспилотные автомобили. 

Боря рассказал о том, как стать крутым Data-Scientist, как парашютный спорт помогает ему в работе, почему конференции по ML бесполезны и ответил на недавний пост разгневанного отца про то, как Алиса рекомендовала видео с историями убийств ребенку.
Читать полностью »

О себе

Здравствуй! Меня зовут Павел, я работаю техническим директором в компании, занимающейся производством IoT устройств. Производим много чего — начиная от контроллеров для умных домов, заканчивая умными приборами учёта на своём запатентованном протоколе сенсорных сетей.

Также исполняют обязанности генерального директора ит-компании. В прошлом полуфиналист ЧМ по программированию ACM ICPC.

Мотивация

Пишу я это статью потому, что наша команда убила около месяца на поиск решения (ещё недели две на реализацию и написание тестов) для хранения и эффективного поиска распознанных лиц в базе данных, с целью сэкономить время вам в ваших проектах. Спойлер: ничего готового вроде классного плагина для существующей СУБД не нашли, а сроки полыхали, по этому написали свою СУБД именно для этой задачи (хранения огромного количества эмбендингов лиц). Моя статья ни в коем случае не претендует на звание исчерпывающего руководства, но, я надеюсь, что она даст точку старта для дальнейшего изучения и развития наших мыслей.

Эмбеддинг – это отображение из дискретного вектора категориальных признаков в непрерывный вектор с заранее заданной размерностью.

Читать полностью »

Рубрика «Читаем статьи за вас». Апрель 2020. Часть 1 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Статьи на сегодня:

  1. TResNet: High Performance GPU-Dedicated Architecture (DAMO Academy, Alibaba Group, 2020)
  2. Controllable Person Image Synthesis with Attribute-Decomposed GAN (China, 2020)
  3. Learning to See Through Obstructions (Taiwan, USA, 2020)
  4. Tracking Objects as Points (UT Austin, Intel Labs, 2020)
  5. CookGAN: Meal Image Synthesis from Ingredients (USA, UK, 2020)
  6. Designing Network Design Spaces (FAIR, 2020)
  7. Gradient Centralization: A New Optimization Technique for Deep Neural Networks (Hong Kong, Alibaba, 2020)
  8. When Does Unsupervised Machine Translation Work? (Johns Hopkins University, USA, 2020)

Читать полностью »

Как мы учим Яндекс отвечать на вопросы и экономим пользователям 20 тысяч часов в сутки - 1

Когда мы вводим запрос в поисковую строку, то ищем информацию, а не ссылки. Более того, зачастую нам требуется короткое предложение или общеизвестный факт. К примеру, [формула объёма усечённой пирамиды] на всех сайтах одинакова — ссылки не нужны, достаточно сразу дать ответ.

Фактовыми (информационными) ответами сейчас никого не удивить, но мало кто знает, как именно они формируются, чем различаются и что важного произошло в этой области за последнее время. Меня зовут Антон Иванов. Сегодня вместе с моим коллегой Михаилом Агеевым dminer мы расскажем историю ответов в поиске и поделимся некоторыми подробностями, о которых раньше нигде не говорили. Надеюсь, будет полезно.

Читать полностью »

Компьютерное зрение на WebRTC-сервере с аппаратным ускорением от Intel OWT - 1


WebRTC упростил (в большинстве своем) получение и отправку видеопотоков в реальном времени. А значит, можно немного поразвлекаться с ними при помощи машинного обучения. В прошлом месяце я показал, как запустить компьютерное зрение (Computer Vision – CV) локально в браузере. Как я уже упоминал, локально – это, конечно, хорошо, но иногда требуется более высокая производительность, и для этого нам понадобится удаленный сервер. В данном посте я расскажу о том, как запускать серверные модели OpenCV с аппаратным ускорением на чипсетах Intel с помощью Open WebRTC Toolkit (OWT) с открытым исходным кодом.
Читать полностью »

Data Science и Machine Learning: как превращать будущее в настоящее - 1

ЗАВТРА, 18 мая в 20:00 специалист по Data Science и машинному обучению Борис Янгель будет отвечать на ваши вопросы о нейросетках и Machine Learning в формате живого интервью в нашем инстаграм-аккаунте. Вы можете задать ему свой вопрос в комментариях к этому посту и спикер ответит вам в прямом эфире.

О спикере

Борис закончил МГУ по специальности Machine Learning. Работал в Microsoft Research в группе Криса Бишопа над фреймворком infer.Net, затем в Яндексе руководил разработкой мозгов Алисы. Любит скайдайвинг, нейросетки, гоночные автомобили и смелые решения. Сейчас Борис работает в Яндексе над проектом беспилотных автомобилей.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js