Рубрика «машинное обучение» - 50

Google анонсировала Tensorflow Quantum - 1

Сегодня в блоге Google AI Blog была анонсирована Tensorflow Quantum — библиотека с открытым исходным кодом для квантового машинного обучения.

TensorFlow Quantum (TFQ) был выпущен в сотрудничестве с Университетом Ватерлоо, X и Volkswagen. TFQ предоставляет инструменты, необходимые для объединения исследовательских сообществ в области квантовых вычислений и машинного обучения для контролирования и моделирования естественных или искусственных квантовых систем.
Читать полностью »

Детектирование аномалий — интересная задача машинного обучения. Не существует какого-то определенного способа ее решения, так как каждый набор данных имеет свои особенности. Но в то же время есть несколько подходов, которые помогают добиться успеха. Я хочу рассказать про один из таких подходов — автоенкодеры.

Читать полностью »

Сегодня я хочу рассказать про свой опыт генерации текста песен с помощью python и библиотеки Markovify

Дисклеймер: автор хотел повеселить себя вечером и не придумал ничего лучше, как:

В качестве корпуса для "обучения" цепи я буду использовать текст песен группы Кис Кис.

image

Пикча выше иллюстрирует то как работает цепь Марокова. А вот неплохая статья.

Читать полностью »

Стартап из Беркли Covariant вышел из тени и считает, что его роботы готовы к выходу в мир

Складские роботы, использующие ИИ для сортировки предметов, готовы к работе - 1

Летом 2018 года небольшой стартап из Беркли, разрабатывающий роботов, столкнулся с трудным заданием. Компания Knapp, крупный поставщик технологий складской логистики, искала новую роботизированную руку, управляемую ИИ, способную захватывать как можно больше различных типов предметов. Каждую неделю, восемь недель подряд, компания отправляла стартапу список из всё более сложных предметов – непрозрачных коробок, прозрачных коробок, упаковок лекарств, носков – покрывавший диапазон продукции клиентов компании. Стартап покупал подобные предметы, а потом через неделю отправлял видео, на котором их роборука перекладывала предметы из одной серой корзины в другую.

К концу задания руководство Knapp было сражено. Они уже лет шесть-семь безуспешно давали подобные задания многим стартапам, и ожидали провала и на этот раз. Но вместо этого в каждом видео роборука стартапа перекладывала каждый предмет с идеальной точностью и подходящей скоростью.
Читать полностью »

Первый хакатон на основе данных Яндекс.Недвижимости - 1

Рынок недвижимости — отличный источник данных для хакатонов, онлайн-контестов по программированию и других соревнований разработчиков. Дело в том, что эта сфера производит большие объёмы качественных данных, компании заинтересованы в проникновении ML, а участники могут сходу предложить основанные на данных улучшения существующих сервисов. 21 и 22 марта Яндекс.Недвижимость проведёт в Москве свой первый хакатон — Hack The Realty. Мы ищем новые способы сделать сервис удобнее и информативнее, а взамен готовы предоставить наши данные, ресурс экспертов и денежные призы. Регистрация продлится до 10 марта.
Читать полностью »

image

Организация YMCA тестирует робота компании Coral Detections Systems, оснащённого камерами и искусственным интеллектом, который будет следить за плавающими в бассейнах людьми. Робот получил название Manta 3000 из-за сходства со скатом. Читать полностью »

Пользу от ИИ (и всех связанных с ним технологий) сложно переоценить. Правильно обученные нейросети способны и подогреть интерес к самой технологии, например, создавая маски для социальных сетей или сгенерированные песни в стилистике любимых исполнителей, и показать практическую пользу в реальных делах — от предсказания событий на производстве до поиска пропавших людей.

В этом посте мы как раз и поговорим о практическом применении ИИ в тяжелой промышленности (да, мы не только приложения делать умеем), а именно о том, как технологии помогли одному производству по переработке руды существенно повысить эффективность работы и перестать гонять человека пару раз в день просеивать куски породы через большое сито.

Как мы забрали у человека сито и помогли мельнице - 1

В 1949 году советский пилот-геологоразведчик Михаил Сургутанов пролетал над одной из территорий Казахстана (урочище Сарбай) и, взглянув на компас, заметил, что стрелка стала игнорировать Север и зажила своей жизнью. Да, как в кино при обнаружении каких-то магнитных аномалий.
Читать полностью »

При изучении Data Science, я решил составить для себя конспект по основным приемам, используемым в анализе данных. В нем отражены названия методов, кратко описана суть и приведен код на Python для быстрого применения. Готовил конспект для себя, но подумал, что кому-то это также может быть полезно, например, перед собеседованием, в соревновании или при запуске нового проекта. Рассчитано на аудиторию, которая в целом знакома со всеми этими методами, но имеет необходимость освежить их в памяти. Статья под катом.
Читать полностью »

Привет!

Напоминаем, что ранее мы анонсировали книгу "Машинное обучение без лишних слов" — и теперь она уже в продаже. Притом, что для начинающих специалистов по МО книга действительно может стать настольной, некоторые темы в ней все-таки затронуты не были. Поэтому всем заинтересованным предлагаем перевод статьи Саймона Керстенса о сути алгоритмов MCMC с реализацией такого алгоритма на Python.
Читать полностью »

При решении задач, связанных с распознаванием (Speech-To-Text) и генерацией (Text-To-Speech) речи важно, чтобы транскрипт соответствовал тому, что произнёс говорящий — то есть реально устной речи. Это означает, что прежде чем письменная речь станет нашим транскриптом, её нужно нормализовать.

Другими словами, текст нужно провести через несколько этапов:

  • Замена числа прописью: 1984 год -> тысяча девятьсот восемьдесят четвёртый год;
  • Расшифровка сокращений: 2 мин. ненависти -> две минуты ненависти;
  • Транскрипция латиницы: Orwell -> Оруэлл и т.д.

Normalization

В этой статье я коротко расскажу о том, как развивалась нормализация в датасете русской речи Open_STT, какие инструменты использовались и о нашем подходе к задаче.

Как вишенка на торте, мы решили выложить наш нормализатор на базе seq2seq в открытый доступ: ссылка на github. Он максимально прост в использовании и вызывается одним методом:

norm = Normalizer()
result = norm.norm_text('С 9 до 11 котики кушали whiskas')

>>> 'С девяти до одиннадцати котики кушали уискас'

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js