Нынче никого не удивишь достижениями искусственного интеллекта машинного обучения (ML) в самых разных областях. При этом доверчивые граждане редко задают два вопроса: (i) а какая собственно цена экспериментов и финальной системы и (ii) имеет ли сделанное хоть какую-то целесообразность? Самым важным компонентом такой цены являются как ни странно цена на железо и зарплаты людей. В случае если это все крутится в облаке, нужно еще умножать стоимость железа в 2-3 раза (маржа посредника).
И тут мы неизбежно приходим к тому, что несмотря на то, что теперь даже в официальные билды PyTorch добавляют бета-поддержку ROCm, Nvidia де-факто в этом цикле обновления железа (и скорее всего следующем) остается монополистом. Понятно, что есть TPU от Google и мифические IPU от Graphcore, но реальной альтернативы не в облаке пока нет и не предвидится (первая версия CUDA вышла аж 13 лет назад!).
Что делать и какие опции есть, когда зачем-то хочется собрать свой "суперкомпьютер", но при этом не хочется платить маржу, заложенную в продукты для ультра-богатых [мысленно вставить комментарий про госдолг США, майнинг, крах Бреттон-Вудсткой системы, цены на здравоохранение в странах ОЭСР]? Чтобы попасть в топ-500 суперкомпьютеров достаточно купить DGX Superpod, в котором от 20 до 100 с лишним видеокарт. Из своей практики — де-факто серьезное машинное обучение сейчас подразумевает карточки Nvidia в количестве примерно 8-20 штук (понятно что карточки бывают разные).