Рубрика «машинное обучение» - 37

Восстанавливаем результаты выборов в Государственную думу 2021 года с помощью машинного обучения - 1

Результаты выборов в государственную думу, которые проходили 17-19 сентября 2021 вызывают сомнения у многих экспертов. Независимый электоральный аналитик Читать полностью »

Го: Долгая дорога к боту - 1There is no difference between theory and practice in theory,
but there is often a great deal of difference between theory
and practice in practice.

Yogi Berra

Я слепым вместо глаз вставил звезды и синее небо.

Юрий Шевчук

Тема игровых ботов с самого начала была для меня довольно чувствительной. Используя Dagaz, я научился воссоздавать самые разнообразные игры, но что в них толку, если с тобой никто не играет? Nest позволил разработать сервер, для игры по сети, но до тех пор пока на нём не слишком много народу, боты продолжают оставаться актуальными. Универсальные боты, которые я писал, были медленными и слабыми. К счастью, знакомство с Garbochess позволило переломить ситуацию, по крайней мере в том, что касалось шахматных игр. Признаюсь честно, я никогда не думал, что у меня появится бот для игры в Го
Читать полностью »

Первое правило машинного обучения: начните без машинного обучения - 1

Эффективное использование машинного обучения — сложная задача. Вам нужны данные. Вам нужен надёжный конвейер, поддерживающий потоки данных. И больше всего вам нужна высококачественная разметка. Поэтому чаще всего первая итерация моих проектов вообще не использует машинное обучение.

Что? Начинать без машинного обучения?

Об этом говорю не только я.

Догадайтесь, какое правило является первым в 43 правилах машинного обучения Google?

Правило №1: не бойтесь запускать продукт без машинного обучения.

Машинное обучение — это здорово, но для него требуются данные. Теоретически, можно взять данные из другой задачи и подстроить модель под новый продукт, но она, скорее всего, не справится с базовыми эвристиками. Если вы предполагаете, что машинное обучение придаст вам рост на 100%, то эвристика даст вам 50%.

Читать полностью »

Паутина для чайников: алгоритм строительства паучьих сетей - 1

К паукам можно относиться как угодно: их можно бояться, недолюбливать или держать в качестве питомцев. Но любой, от арахнофоба до арахнолога, согласится с тем, что они мастера по строительству своих сетей. Научное сообщество уже очень давно и с большим интересом наблюдает за членистоногими прядильщиками, но полностью раскрыть все их секреты пока еще не удалось. И вот ученые из университета Джонса Хопкинса (США) решили детально рассмотреть и описать процесс строительства паутины, используя при этом искусственный интеллект и приборы ночного видения. Выяснилось, что разные виды пауков подчиняются общим правилам в ходе создания своих сетей. Следовательно, наблюдение за движениями лапок может предсказать, что именно будет строить паук. На какие стадии можно разделить строительство паутины, как пауки ведут себя во время каждой из них, и как эти данные могут помочь в понимании нас самих? Ответы на эти вопросы мы найдем в докладе ученых. Поехали.Читать полностью »

UPD: эта статья была написана до выхода интереснейшего материала о нейросети ruDALL-E. Мы решили всё равно её опубликовать — таким образом у читателей будет возможность сравнить изображения, сгенерированные отечественной и зарубежной сетями. Дальнейший текст публикуется без изменений.

Рисуем вместе с CLIP Guided Diffusion HQ - 1


Во времена старого Баша мне запомнилась одна цитата:

kok:
Подскажите какой прогой перегонять книги из txt в mp3
Izzzum:
^^^^^ No Comment а почему сразу не в 3gp или XviD?
kok:
А в каком по твоему формате аудиокниги?
kok:
Или ты думаешь, что какойто дурень сидит и начитывает перед микрофоном?

Что ж, если не предъявлять слишком высоких требований к реалистичности результата, можно сказать, что сегодня у нас такие «проги» есть. Речь, конечно же, о нейросетях, которые умеют генерировать практически любые виды контента.

Читать полностью »

Постановка задачи

Обучение с подкреплением молодая и бурно растущая дисциплина. Это обстоятельство привело к тому что информации об этом на русском языке почти нет. Особенно, если дело касается объектно-ориентированного подхода, и практических задач не из арсенала "качалки".

Представляю вам результат простой задачи, которая как я надеюсь, убережет вас от части шишек встречающихся на этом интересном пути.

Предположим задачу, в которой нано робот с антибиотиком должен подобраться к скоплению патогенных бактерий для их уничтожения.

Загрузим Reinforsment Learning от Keras и библиотеку для анимации.

Читать полностью »

В настоящее время глубокое обучение используется для перевода, прогнозирования укладки белков, анализа рентгеновских и других медицинских снимков , а также для игр, столь сложных как го  - вот лишь некоторые варианты применения этой технологии, которая становится всепроникающей. Успех в этой и других отраслях привел технологию машинного обучения от безвестности в нулевые до доминирования сегодня.

Читать полностью »

NLI (natural language inference) – это задача автоматического определения логической связи между текстами. Обычно она формулируется так: для двух утверждений A и B надо выяснить, следует ли B из A. Эта задача сложная, потому что она требует хорошо понимать смысл текстов. Эта задача полезная, потому что "понимательную" способность модели можно эксплуатировать для прикладных задач типа классификации текстов. Иногда такая классификация неплохо работает даже без обучающей выборки!

До сих пор в открытом доступе не было нейросетей, специализированных на задаче NLI для русского языка, но теперь я обучил целых три: Читать полностью »

Моя маленькая помощь малым языкам - 1

Сложный был год: налоги, катастрофы, бандитизм и стремительное исчезновение малых языков. С последним мириться было нельзя...

На территории России проживает большое количество народов, говорящих более чем на 270 языках. Около 150 языков насчитывает менее 1 тысячи носителей, а за последние 20 лет 7 языков уже исчезло.

Этот проект — мои "пять копеек" по поддержке языкового разнообразия. Его цель — помощь исследователям в области машинного перевода, лингвистам, а также энтузиастам, радеющим за свой родной язык. Помогать будем добыванием параллельных корпусов, — своеобразного "топлива", при помощи которого современные модели все успешнее пытаются понять человеческий язык.

Сегодняшние языки — башкирский и чувашский, с популяризаторами которых я в последнее время тесно общался. Сначала я покажу как в принципе извлечь корпус из двух текстов на разных языках. Затем мы столкнемся с тем, что на рассматриваемых языках предобученная модель не тренировалась и попробуем ее дообучить.

Экспериментировать мы будем в среде Colab'а, чтобы любой исследователь при желании смог повторить этот подход для своего языка.

I. Извлекаем параллельный корпус

Для выравнивания двух текстов я написал на python'е библиотеку lingtrain_aligner. Код у нее открыт. Она использует ряд предобученных моделей, можно подключать и свои. Одной из самых удачных мультиязыковых моделей сейчас является LaBSE. Она обучалась на 109 языках. Так как соотношение текстов смещено в сторону популярных языков, то для них качество эмбеддингов (эмбеддингом называют вектор чисел применительно к данным, которые он описывает) будет лучше.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js