Рубрика «машинное обучение» - 36

Scaled YOLO v4 является самой точной нейронной сетью (55.8% AP) на датасете Microsoft COCO среди всех опубликованных нейронных сетей на данный момент. А также является лучшей с точки зрения соотношения скорости к точности во всем диапазоне точности и скорости от 15 FPS до 1774 FPS. На данный момент это Top1 нейронная сеть для обнаружения объектов.

Scaled YOLO v4 обгоняет по точности нейронные сети:

  • Google EfficientDet D7x / DetectoRS or SpineNet-190 (self-trained on extra-data)
  • Amazon Cascade-RCNN ResNest200
  • Microsoft RepPoints v2
  • Facebook RetinaNet SpineNet-190

Мы показываем, что подходы YOLO и Cross-Stage-Partial (CSP) Network являются лучшими с точки зрения, как абсолютной точности, так и соотношения точности к скорости.

График Точности (вертикальная ось) и Задержки (горизонтальная ось) на GPU Tesla V100 (Volta) при batch=1 без использования TensorRT:

Scaled YOLO v4 самая лучшая нейронная сеть для обнаружения объектов на датасете MS COCO - 1

Читать полностью »

Оказывается, некоторое время спустя Айзек Азимов придумал 4 закон робототехники

0. Робот не может причинить вред человечеству или своим бездействием допустить, чтобы человечеству был причинен вред.

три предыдущих:
1. Робот не может причинить вред человеку или своим бездействием допустить, чтобы человеку был причинен вред.
2. Робот должен повиноваться всем приказам, которые дает человек, кроме случаев, когда эти приказы противоречат Первому закону.
3. Робот должен заботиться о своей безопасности в той мере, в которой это не противоречит Первому и Второму законам.

P.S. "Мы не знаем, как создать настолько умных и проницательных роботов, чтобы они смогли исполнить эти три закона," — и добавляет, что Азимов, возможно, "не понимал, какую перцептивную нагрузку на роботов создают эти законы."
Родни Брукс

Источник Джордан Д. "Роботы"

Boston Dynamics: от боевых роботов в коммерцию - 1

Boston Dynamics: от боевых роботов в коммерцию

Читать полностью »

Машинное обучение в Hum to Search от Google - 1


Навязчивые мелодии (англ. earworms) – хорошо известное и порой раздражающее явление. Как только одна из таких застревает в голове, избавиться от нее бывает довольно трудно. Исследования показали, что так называемое взаимодействие с оригинальной композицией, будь то ее прослушивание или пропевание, помогает прогнать навязчивую мелодию. Но что, если вы не можете вспомнить название песни, а можете только напеть мотив?
Читать полностью »

image

Режиссер Виктор Тарански под угрозой срыва съемок своего фильма из-за главной актрисы, решившей отказаться сниматься, решает заменить ее цифровой актрисой Симоной, созданной с помощью компьютера. Появление Симоны вызывает ажиотаж. Всех поражают актёрские данные девушки — программные средства позволили Виктору объединить в ней талант и внешность практически всех выдающихся актрис. У Симоны миллионы поклонников, о ней все говорят, ей подражают, она получает Оскар.
Читать полностью »

Всем привет! Меня зовут Олег Петров, я руковожу группой R&D в Центре речевых технологий. Мы давно работаем не только над распознаванием речи, но и умеем синтезировать голоса. Самый простой пример, для чего это нужно бизнесу: чтобы для каждого нового сценария, которому обучают голосовых роботов, не нужно было организовывать новую запись с человеком, который его когда-то озвучил. Ещё мы развиваем продукты на основе голосовой и лицевой биометрии и аналитики по голосовым данным. В общем, работаем над серьёзными и сложными задачами для разного бизнеса.

Как из четырёх минут речи мы воссоздали голос молодого Леонида Куравлёва - 1

Но недавно к нам пришли коллеги из Сбера с предложением поучаствовать в развлекательной истории — «озвучить» героя Леонида Куравлёва в новом ролике. Для него лицо Куравлева было воссоздано по кадрам из фильма «Иван Васильевич меняет профессию» и наложено на лицо другого актера с помощью технологии Deepfake. Чтобы мы смогли не только увидеть, но и услышать в 2020 году Жоржа Милославского, мы решили помочь коллегам. Ведь с годами голос у всех нас меняется и даже если бы Леонид Вячеславович озвучил героя, эффект был бы не тот.

Под катом я расскажу, почему эта, уже во многом привычная задача голосового синтеза, оказалась чуть сложнее, чем мы ожидали, и поясню, почему такие голоса не смогут обмануть качественные системы биометрической авторизации.
Читать полностью »

Известно, что ответ на вопрос жизни, Вселенной и всего такого — 42. Однако, несмотря на согласованные усилия лучших умов человечества, соответствующий вопрос всё ещё ускользает от нас. Специально к старту нового потока курса «Машинное обучение» делимся материалом, автор которого задаёт тот самый вопрос  новейшей языковой модели GPT-3. Что из этого вышло — читайте под катом.

Я спросил GPT-3 о «вопросе 42». Ответ мне не понравился. И вам тоже не понравится - 1


Читать полностью »

Заметки Датасатаниста: что делать, если перед вами оказалась NP-полная задача - 1

Наверное, каждый сталкивался с тем, что приходилось столкнуться с какой-то сложной задачей, решение к которой не удавалось подобрать не то что сразу — а даже после долгих упорных часов работы или дней. Об одном из классов таких задач — NP-полных, мы сегодня и поговорим.

А вообще реально ли встретить такие задачи в обычной жизни? На самом деле, они возникают в огромном ряде случаев: комбинаторика, графы и сети, выполнение логических формул, работа с картами, оптимальные загрузки, отображения, задачи дискретной оптимизации, нахождение самых длинных последовательностей, поиск равных сумм и многие задачи на множества! И это далеко не полный список.

Под катом неформальный гайд — как понять, что перед вам может быть NP задача и что делать, если это именно она и оказалась. Сегодня мы атакуем этот вопрос с практической стороны.
Читать полностью »

Привет. Меня зовут Саша Готманов, я руковожу группой нейросетевых технологий в поиске Яндекса. На YaC 2020 мы впервые рассказали о внедрении трансформера — новой нейросетевой архитектуры для ранжирования веб-страниц. Это наиболее значимое событие в нашем поиске за последние 10 лет. 

Сегодня я расскажу читателям Хабра, в чём заключается иллюзия «поиска по смыслу», какой путь прошли алгоритмы и нейросети в ранжировании и какие основные сложности стоят перед теми, кто хочет применить для этой задачи трансформеры и даже заставить их работать в рантайме. 

Читать полностью »

Пару дней назад на нашем ютубе выступала Алсу Миссарова, выпускница мехмата МГУ, PhD по системной биологии (functional genomics in yeast) в Universitat Ponepu Fabra в Барселоне. Сейчас Алсу постдок в лабе JOhn Marioni (EBI, Cambridge, UK), занимается single cell RNA-seq and интеграцией со spatial transcriptomics.

Алсу сделала очень краткое введение в то, что такое биоинформатика и чем это отличается от вычислительной биологии. Делимся с вами записью и расшифровкой эфира: мы надеемся, что это вводная к целой серии спикеров, которые занимаются биоинформатикой.


Меня зовут Алсу Миссарова. Меня просили рассказать про биоинформатику – в частности, какие задачи я решаю, какого рода данные я обрабатываю, какого рода задачи есть в вычислительной биологии для технарей, для людей с уклоном в computer science, data analysis и так далее.
Читать полностью »

Шесть степеней свободы: 3D object detection и не только - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js