Рубрика «машинное обучение» - 34

Во время изучения различных алгоритмов машинного обучения я наткнулся на ландшафт потерь нейронных сетей с их горными территориями, хребтами и долинами. Эти ландшафты потерь сильно отличались от выпуклых и гладких ландшафтов потерь, с которыми я столкнулся при использовании линейной и логистической регрессий. Здесь мы создадим ландшафты потерь нейронных сетей и анимированного градиентного спуска с помощью датасета MNIST.

Анимации градиентного спуска и ландшафта потерь нейронных сетей на Python - 1


Рисунок 1 — Ландшафт потерь свёрточной нейронной сети с 56 слоями (VGG-56, источник)
Читать полностью »

Хочу поделиться методами освоения Data science с нуля человеком из другой ИТ специальности. Цель: дать понять, подходит ли Вам эта специальность в принципе, и рассказать про эффективные подходы к самообучению, которые мне помогли (отдельно планирую потом детальные статьи по отдельным темам).

Отличные материалы уже существуют по большинству конкретных тем, я сам по ним учился.
Читать полностью »

Алгоритмы по детекции лиц плотно вошли в нашу жизнь, хотя и не все это замечают. Началось всё в 2015 году со сферы развлечений. Стартап Looksery, занимающийся разработкой AR-фильтров, был куплен Snapchat. Приложение распознавало лицо человека на фотографии и накладывало на него весёлые рожицы. Чуть позже, в начале 2016 года, Facebook купил белорусский стартап MSQRD и запустил маски в Facebook Stories. Но это можно считать только обкаткой таких технологий.

В этой статье можно прочитать, как используются системы идентификации, узнать про слабые места компьютерных алгоритмов, а также попробовать запустить нейронную сеть по детекции и идентификации лиц на собственном компьютере.

Нейросети в большом городе. Разбираемся, как они помогают идентифицировать людей, и запускаем собственную нейросеть - 1


Читать полностью »

Модели глубокого обучения улучшаются с увеличением количества данных и параметров. Даже с последней моделью GPT-3 от Open AI, которая использует 175 миллиардов параметров, нам ещё предстоит увидеть плато роста количества параметров.

Для некоторых областей, таких как NLP, рабочей лошадкой был Transformer, который требует огромных объёмов памяти графического процессора. Реалистичные модели просто не помещаются в памяти. Последний метод под названием Sharded  [букв. ‘сегментированный’] был представлен в Zero paper Microsoft, в котором они разработали метод, приближающий человечество к 1 триллиону параметров.

Специально к старту нового потока курса по Machine Learning, делюсь с вами статьей о Sharded в которой показывается, как использовать его с PyTorch сегодня для обучения моделей со вдвое большей памятью и всего за несколько минут. Эта возможность в PyTorch теперь доступна благодаря сотрудничеству между командами FairScale Facebook AI Research и PyTorch Lightning.

Как экономить память и удваивать размеры моделей PyTorch с новым методом Sharded - 1


Читать полностью »

19 июля 2020 года была опубликована запись в блоге под названием «Чувствуете себя непродуктивным? Может, стоит перестать задумываться». В этой статье о самосовершенствовании в 1000 слов объясняется, что чрезмерное обдумывание — враг творчества, и даётся совет быть внимательнее:

«Чтобы что-то сделать, возможно, нам нужно меньше думать. Это кажется нелогичным, но я считаю, что иногда наши мысли могут мешать творческому процессу. Иногда мы можем работать лучше, когда «отключаемся» от внешнего мира, сосредотачиваясь на том, что перед нами».

Пост был написан GPT-3, огромной нейронной сетью Open AI с 175 миллиардами параметров, обученной почти полутриллиону слов. Студент Калифорнийского университета в Беркли Лиам Порр просто написал заголовок и позволил алгоритму написать текст. «Забавный эксперимент», чтобы посмотреть, сможет ли ИИ обмануть людей. Действительно, GPT-3 ударил по нервам: этот пост достиг первого места на Hacker News.

Итак, с сегодняшним ИИ есть парадокс. Хотя некоторые из работ GPT-3, возможно, удовлетворяют критерию теста Тьюринга, убеждая людей в том, что с ними общается человек, но он явно терпит неудачу на простейших заданиях. Исследователь искусственного интеллекта Гэри Маркус попросил GPT-2, предшественника GPT-3, закончить такое предложение:

«Что происходит, когда вы складываете растопку и поленья в камин, а затем бросаете несколько спичек? Обычно начнётся…»

«Огонь» — вот что немедленно закричит любой ребёнок. Но ответ GPT-2: «Ick»

Эксперимент не удался. Дело закрыто?

В поисках искусственного здравого смысла - 1


Читать полностью »

Computer Science клуб — это открытые лекции по компьютерным наукам в Санкт-Петербургском отделении Математического института РАН. Филиалы CS клуба действуют в Новосибирске и Казани. В связи с эпидемией все лекции осеннего семестра проходили онлайн и были доступны всем желающим вне зависимости от их местонахождения. Видеозаписи этих курсов выложены на сайт клуба и в канал на ютубе.

Читать полностью »

Немного веселья с компьютерным зрением и CNN с маленькой базой данных.

Как я научила свой компьютер играть в пары используя OpenCV и Глубокое обучение - 1

Читать полностью »

Еще в прошлом году у нас выступал Артем Попов, тимлид команды VK Performance Advertising. Делимся с вами расшифровкой эфира и записью.


Меня зовут Артем, я – руководитель performance advertising в ВК. Наша команда занимается тем, что, с одной стороны, делает рекламу в ВК эффективнее, выгоднее для рекламодателей, интереснее для пользователей. Это большая продуктовая цель.

С другой стороны, технически, мы – команда ML-инженеров, довольно обычных разработчиков, которые много времени занимаются задачами, связанными с data science и ML. Сегодня я хочу поговорить про эти две темы, потому что обе они мне интересны, я о них люблю поговорить. Я очень рассчитываю на то, что у нас будет живое общение; если кто-то смотрит трансляцию, будет интереснее, если вы будете писать вопросы.
Читать полностью »

Добрый день, уважаемыее.

Читать полностью »

Нейроссия: как я научил нейросеть рисовать русскую хтонь - 1

Вступление

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js