Рубрика «машинное обучение» - 32

Представлюсь

Всем привет! Меня зовут Влад Виноградов, я руководитель отдела компьютерного зрения в компании EORA.AI. Мы занимаемся глубоким обучением уже более трех лет и за это время реализовали множество проектов для российских и международных клиентов в которые входила исследовательская часть и обучение моделей. В последнее время мы фокусируемся на решении задач поиска похожих изображений и на текущий момент создали системы поиска по логотипам, чертежам, мебели, одежде и другим товарам.

Эта публикация предназначена для Machine Learning инженеров и написана по мотивам моего выступления Читать полностью »

sourcing_channels

Наверное как и большая часть Хабра я вчера проглядел эту статью — "Собеседование в Яндекс: театр абсурда :/". Она занятная и чего уж таить греха, я чувствовал такие же "нотки", когда ходил в Яндекс на собеседование на роль… менеджера несколько лет назад. Еще мне предложили купить их акций на свои деньги вместо опционов… хм. В принципе довольно очевидно, какие "качества" они проверяют таким образом.

Но не суть. Нужно всегда пытаться свести все к созиданию, а не разрушению. Конструктивная постановка вопроса состоит в том, а можно ли сделать нормально в отдельно взятой отрасли, например в машинном обучении? Или собеседования сломаны как класс?

Некоторое время назад я написал такую статью в личном блоге, но постеснялся выкладывать ее дальше личного блога. И наверное зря, т.к. многие мои знакомые довольно высоко ее оценили. Если коротко — я лично пропустил через себя около 150 кандидатов и в итоге мы остались довольны результатом и люди, которых мы нашли, до сих пор успешно справляются со своими задачами, все тепло и лампово.

Прочитав вчерашнюю статью, я понял, что мне есть чего добавить по сути. Последние несколько лет я выкладывал на Хабр как правило сугубо технические статьи (релизы датасетов, моделей, тесты железа) и зачастую грустил, потому что они не находили должного отклика пропорционального количеству вложенных усилий. Так что позвольте мне минутку слабости и я постараюсь "починить" сломанный подход Яндекса для отдельно взятого кейса.

TLDR: Сломаны ли собеседования как класс? Короткий ответ — нет, но надо приложить очень много усилий со своей стороны в первую очередь. И подход всегда будет уникальным для каждой сферы деятельности.

Читать полностью »

К сожалению, мир машинного обучения принадлежит python.

Он давно закрепился, как рабочий язык для Data Science , но Microsoft решила поспорить и представила свой инструмент, который легко можно интегрировать с экосистемой, которой сейчас пользуется весь мир. Так появился ML.NET, кросс-платформенная и открытая система машинного обучения для разработчиков .NET.

Читать полностью »

thumbnail

Нынче никого не удивишь достижениями искусственного интеллекта машинного обучения (ML) в самых разных областях. При этом доверчивые граждане редко задают два вопроса: (i) а какая собственно цена экспериментов и финальной системы и (ii) имеет ли сделанное хоть какую-то целесообразность? Самым важным компонентом такой цены являются как ни странно цена на железо и зарплаты людей. В случае если это все крутится в облаке, нужно еще умножать стоимость железа в 2-3 раза (маржа посредника).

И тут мы неизбежно приходим к тому, что несмотря на то, что теперь даже в официальные билды PyTorch добавляют бета-поддержку ROCm, Nvidia де-факто в этом цикле обновления железа (и скорее всего следующем) остается монополистом. Понятно, что есть TPU от Google и мифические IPU от Graphcore, но реальной альтернативы не в облаке пока нет и не предвидится (первая версия CUDA вышла аж 13 лет назад!).

Что делать и какие опции есть, когда зачем-то хочется собрать свой "суперкомпьютер", но при этом не хочется платить маржу, заложенную в продукты для ультра-богатых [мысленно вставить комментарий про госдолг США, майнинг, крах Бреттон-Вудсткой системы, цены на здравоохранение в странах ОЭСР]? Чтобы попасть в топ-500 суперкомпьютеров достаточно купить DGX Superpod, в котором от 20 до 100 с лишним видеокарт. Из своей практики — де-факто серьезное машинное обучение сейчас подразумевает карточки Nvidia в количестве примерно 8-20 штук (понятно что карточки бывают разные).

Читать полностью »

Видеоаналитика «М.Видео-Эльдорадо»: 30 000 камер, 1 компьютер и нейросеть - 1

В середине 2020 года мы в «М.Видео-Эльдорадо» начали строить собственную систему видеоаналитики «с нуля», не используя сторонние готовые платформы. В перспективе она должна охватить более тысячи магазинов торговой сети. О том, почему мы выбрали этот путь и каких результатов добились, читайте в сегодняшней статье.Читать полностью »

Распознавание потребителей электричества в сети - 1

Читать полностью »

10 полезных расширений для дата-сайентистов - 1


Каждый специалист по Data Science тратит большую часть своего времени на визуализацию данных, их предварительную обработку и настройку модели на основе полученных результатов. Для каждого исследователя данных именно эти моменты – самая сложная часть процесса, поскольку хорошую модель можно получить при условии, что вы точно выполните все эти три шага. И вот 10 очень полезных расширений Jupyter Notebook, которые помогут вам выполнить эти шаги.

Читать полностью »

В этой неделе на нашем youtube-канале выступала Валерия Коган — выпускница физтеха, со-основательница стартапов Fermata и Smartomica.

Лере пришла идея контролировать растения в теплицах за счет машинного обучения, когда ее знакомые рассказали ей о своих проблемах с массовым выращивании огурцов и помидоров. Тогда она с приятелями основала Fermata и начала разрабатывать платформу для мониторинга растений в реальном времени.

В 2019-ом компания привлекла $1,1 млн инвестиций от частного инвестора, а уже в в марте 2020-го, в ходе раунда А получила еще $3,7 млн. инвестиций от британского фонда Massa Innovations и нескольких частных инвесторов.

Кроме агротеха, Лера занимается разработкой новых методов диагностики рака и является приглашенным ученым в Roswell Park Cancer Institute. В Smartomica они разрабатывает технологии анализа медицинских и научных данных для диагностики и лечения онкологических пациентов

Делимся с вами расшифровкой и записью эфира.
Читать полностью »

Подробности разработки “Пятерочки" на автопилоте от Х5 Retail Group

Читать полностью »

В этой главе мы познакомимся с нейронными сетями и узнаем для чего они были спроектированы. Эта глава служит фундаментом для последующих глав, в то время как эта показывает базовые понятия нейронных сетей. В этой главе мы покроем следующие темы:

  • Искусственные нейроны

  • Весы(weights) и смещения(biases)

  • Активационные функции(activation functions)

  • Слои нейронов(layers)

  • Реализация нейронной сети на Java

Раскрывая нейронные сети

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js