Рубрика «машинное обучение» - 31

6cc6e0011d4d26aeded6f052080b1890

Мы были очень рады, что наша прошлая статья понравилась Хабру. Мы получили много позитивной и негативной обратной связи. Также в ней мы сделали ряд обещаний по развитию нашего синтеза.

Мы достигли существенного прогресса по этим пунктам, но ультимативный релиз со всеми новыми фичами и спикерами может занять относительно много времени, поэтому не хотелось бы уходить в радиомолчание надолго. В этой статье мы ответим на справедливую и не очень критику и поделимся хорошими новостями про развитие нашего синтеза.

Если коротко:

  • Мы сделали наш вокодер в 4 раза быстрее;
  • Мы сделали пакетирование моделей более удобным;
  • Мы сделали мультиспикерную / мультязычную модель и "заставили" спикеров говорить на "чужих" языках;
  • Мы добавили в наши русские модели возможность автопростановки ударений и буквы ё с некоторыми ограничениями;
  • Теперь мы можем сделать голос с нормальным качеством на 15 минутах — 1 часе (с теплого старта в принципе заводилось даже на 3-7 минутах) или на 5 часах аудио (с холодного старта). Но тут все очень сильно зависит от качества самого аудио и ряда деталей;
  • Мы привлекли коммьюнити к работе, и нам помогли сделать удобный интерфейс для записи. Мы начали работу над голосами на языках народностей СНГ (украинский, татарский, башкирский, узбекский, таджикский). Если вы хотите увидеть свой язык в числе спикеров — пишите нам;
  • Мы продолжаем собирать обратную связь по применимости нашей системы для экранных интерфейсов чтения, и пока кажется, что нужно где-то еще всё ускорить в 5-10 раз, чтобы наши модели закрывали и этот кейс;

Читать полностью »

Оракул технологического мира Gartner регулярно и охотно делится с обществом своими наблюдениями относительно текущих трендов. Эксперты компании составили подборку из 10 трендов в сфере данных и аналитики, которые стоит учитывать ИТ-лидерам в 2021 году – от искусственного интеллекта до малых данных и применения графовых технологий. 

Материал Gartner является отличной пищей к размышлению, а в некоторых случаях он может сыграть важную роль при принятии стратегических решений. Для того, чтобы оставаться в курсе основных трендов и в то же время не тратить ресурсы на собственный анализ, уберечься от ошибок субъективного мнения, удобно пользоваться предоставленным отчетом, перевод которого и предлагается в этой статье. 

ТОП-10 трендов в сфере данных и аналитики 2021. Версия Gartner - 1

Источник
Читать полностью »

Как Яндекс применил генеративные нейросети для поиска ответов - 1

Только что мы представили новую версию поиска Y1. Она включает в себя комплекс технологических изменений. В том числе улучшения в ранжировании за счёт более глубокого применения трансформеров. Подробнее об этом направлении мой коллега Саша Готманов уже рассказывал в нашем блоге. В новой версии модель стала мощнее: количество параметров возросло в 4 раза. Но сегодня мы поговорим о других изменениях.

Когда человек вводит запрос в поисковик, он ищет информацию или способ решения своей задачи. Наша глобальная цель — помогать находить такие ответы, причём сразу в наиболее ёмком виде, чтобы сэкономить людям время. Этот тренд на ускорение решения пользовательских задач особенно заметен в последние годы. К примеру, теперь многие пользователи задают свои вопросы не текстом в поиске, а голосовому помощнику. И тут нам на помощь пришли огромные генеративные нейросети, которые способны перерабатывать, суммаризировать и представлять в ёмком виде тексты на естественном языке. Пожалуй, самой неожиданной особенностью таких сетей стала возможность быстро обучаться на всё новые задачи без необходимости собирать большие датасеты.

Сегодня мы поделимся опытом создания и внедрения технологии YaLM (Yet another Language Model), которая теперь готовит ответы для Поиска и Алисы. В этом мне помогут её создатели — Алексей Петров petrovlesha и Николай Зинов nzinov. Эта история основана на их докладе с Data Fest 2021 и описывает внедрения модели в реальные продукты, поэтому будет полезна и другим специалистам в области NLP. Передаю слово Алексею и Николаю.

Читать полностью »

Создание нейронной сети Хопфилда на JavaScript - 1

Столкнувшись в университете с нейронными сетями, одной из любимых для меня стала именно сеть Хопфилда. Я был удивлен, что она оказалась последней в списке лабораторных работ, ведь ее работу можно наглядно продемонстрировать при помощи изображений и она не так сложна в реализации.

Читать полностью »

Оцветнение видео под капотом

Продолжаю рассказывать о своём необычном увлечении. Моё хобби заключается в алгоритмическом преобразовании древнего черно-белого видео в материал, который выглядит современно. Про мою первую работу написано в этой статье. Прошло время, мои навыки улучшились, и теперь я не смеюсь над мемом «Zoom and enhance».

Балет и роботы - 1


Времяпрепровождение может показаться странным, но оно, правда, приносит удовольствие. Может дело в возможности быть волшебником, превращающим с помощью техномагии пепел прошлого в огонь, а может причина в множестве интеллектуальных ребусов, не имеющих готового решения, может быть это компенсация недостатка творческого самовыражения, может быть всё вместе. С каждым новым видео процесс обрастает деталями, растёт количество задействованных сторонних инструментов и скриптов.Читать полностью »

В фильмах или роликах с YouTube мы наблюдаем происходящее из одной точки, нам не доступны перемещение по сцене или смещение угла зрения. Но, кажется, ситуация меняется. Так, исследователи из Политехнического университета Вирджинии и Facebook разработали новый алгоритм обработки видео. Благодаря ему, можно произвольно изменять угол просмотра уже готового видеопотока. Что примечательно — алгоритм использует кадры, которые получены при съемке на одну камеру, совмещение нескольких видеопотоков с разных камер не требуется.

В основе нового алгоритма — нейросеть NeRF (Neural Radiance Fields for Unconstrained). Эта появившаяся в прошлом году сеть умеет превращать фотографии в объемную анимацию. Однако для достижения эффекта перемещения в видео проект пришлось существенно доработать.
Читать полностью »

Комментарий переводчика, или никто никого не обучает - 1

Читать полностью »

Тихая революция и новый дикий запад в ComputerVision - 1

Казалось бы, революция с Computer Vision уже была. В 2012 году выстрелили алгоритмы основанные на сверточных нейронных сетях. Года с 2014 они дошли до продакшна, а года с 2016 заполонили всеЧитать полностью »

Всем привет! Это небольшой рассказ про то, как команда Центра компетенции больших данных и искусственного интеллекта в ЛАНИТ оптимизировала работу банкоматной сети. Упор в статье сделан не на описание подбора параметров и выбор лучшего алгоритма прогнозирования, а на рассмотрение концепции нашего подхода к решению поставленной задачи. Кому интересно, добро пожаловать под кат.

Прикручиваем ИИ: оптимизация работы банкоматов - 1

источник
Читать полностью »

Вомбатизация, или зачем мы разработали собственную систему управления пайплайнами данных - 1

Очень часто использование в разработке готовых инструментов становится неоптимальным решением. Так получилось и у нас. Для управления пайплайнами данных мы решили разработать собственную систему – Wombat. Рассказываем, что из этого получилось, и что нам дал отказ от использования готового решения.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js