Рубрика «машинное обучение» - 256

Нейропластичность в искусственных нейронных сетях - 1 Привет, давно не виделись. В этом посте мне хотелось бы рассказать о таком относительно новом понятии в машинном обучении, как transfer learning. Так как я не нашел какого-либо устоявшегося перевода этого термина, то и в названии поста фигурирует хоть и другой, но близкий по смыслу термин, который как бы является биологической предпосылкой к формализации теории передачи знаний от одной модели к другой. Итак, план такой: для начала рассмотрим биологические предпосылки; после коснемся отличия transfer learning от очень похожей идеи предобучения глубокой нейронной сети; а в конце обсудим реальную задачу семантического хеширования изображений. Для этого мы не будем скромничать и возьмем глубокую (19 слоев) сверточную нейросеть победителей конкурса imagenet 2014 года в разделе «локализация и классификация» (Visual Geometry Group, University of Oxford), сделаем ей небольшую трепанацию, извлечем часть слоев и используем их в своих целях. Поехали.
Читать полностью »

Ваш персональный курс по Big Data - 1 Привет!

После публикации нескольких статей по Big Data и Машинному обучению, ко мне пришло немало писем от читателей с вопросами. За последние несколько месяцев мне удалось помочь многим людям сделать быстрый старт, некоторые из них — уже решают прикладные задачи и делают успехи. А кто-то уже устроился на работу и занимается решением реальных задач. Моя цель — чтобы вокруг меня были умные люди, с которыми в том числе и я смогу работать в дальнейшем. Поэтому я хочу помочь тем, кто действительно хочет научиться решать настоящие задачи на практике. В сети присутствует большое количество мануалов о том, как стать ученым по данным (Data Scientist). В свое время я прошел все, что там есть. Однако, на практике порой нужны совсем другие знания. О том, какие именно навыки нужны — я расскажу в сегодняшней статье и постараюсь ответить на все Ваши вопросы.
Читать полностью »

Обзор наиболее интересных материалов по анализу данных и машинному обучению №39 (9 — 15 марта 2015) - 1
Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения.
Читать полностью »

В результате своих изысканий я перестал для себя использовать фразу «искусственный интеллект» как слишком неопределенную и пришел к другой формулировке: алгоритм самообучения, исследования и применения найденных результатов для решения любых возможных к реализации задач.

Сформулируем аксиомы:
1. Все в мире можно посчитать по каким-нибудь правилам.
2. Расчет по правилу, это однозначная зависимость результата от исходных данных.
3. Любые однозначные зависимости можно находить статистически.
Читать полностью »

Архитектура системы машинного обучения защиты от рисков - 1

Бизнес нашей во многом строится на взаимном доверии между Airbnb, владельцами жилья и путешественниками. Поэтому мы стараемся создать одно из самых доверенных сообществ. Одним из инструментов построение такого сообщества стала система обзоров, которая помогает пользователям найти участников, заслуживших высокую репутацию.
Читать полностью »

Big Data как подростковый секс: все об этом говорят, но… - 1

Студент в Big Data получает 70 тысяч рублей в месяц, а специалист с опытом 3-4 года — 250 тысяч рублей в месяц. Это те, например, кто умеет персонализировать предложения розницы, искать в соцсети человека по анкетным данным заявки на кредит или по списку посещённых сайтов вычислять новую симку старого абонента.

Мы решили сделать профессиональный курс по Big Data без «воды», маркетинга и всяких эджайлов, только хардкор. Позвали практиков из 7 крупных компаний (включая Сбербанк и Oracle) и устроили, фактически, хакатон длиной во весь курс. Недавно у нас прошел день открытых дверей по программе, где мы напрямую спросили практиков, что же есть Big Data в России, и как компании на деле используют большие данные. Ниже ответы. Читать полностью »

Курс по Big Data: три месяца на основные знания, и зачем это нужно - 1

Студент в Big Data получает 70 тысяч рублей в месяц, а специалист с опытом 3-4 года — 250 тысяч рублей в месяц. Это те, например, кто умеет персонализировать предложения розницы, искать в соцсети человека по анкетным данным заявки на кредит или по списку посещённых сайтов вычислять новую симку старого абонента.

Мы решили сделать профессиональный курс по Big Data без «воды», маркетинга и всяких эджайлов, только хардкор. Позвали практиков из 7 крупных компаний (включая Сбербанк и Oracle) и устроили, фактически, хакатон длиной во весь курс. Недавно у нас прошел день открытых дверей по программе, где мы напрямую спросили практиков, что же есть Big Data в России, и как компании на деле используют большие данные. Ниже ответы. Читать полностью »

Прошел месяц с появления моей первой статьи на Хабре и 20 дней с момента появления второй статьи про линейную регрессию. Статистика по просмотрам и целевым действиям аудитории копится, и именно она послужила отправной точкой для данной статьи. В ней мы коротко рассмотрим пример нелинейной регрессии (а именно, экспоненциальной) и с ее помощью построим модель конверсии, выделив среди пользователей две группы.

Когда известно, что случайная величина y зависит от чего-то (например, от времени или от другой случайной величины x) линейно, т.е. по закону y(x)= Ax+b, то применяется линейная регрессия (так в прошлой статье мы строили зависимость числа регистраций от числа просмотров). Для линейной регрессии коэффициенты A и b вычисляются по известным формулам. В случае регрессии другого вида, например, экспоненциальной, для того чтобы определить неизвестные параметры, необходимо решить соответствующую оптимизационную задачу: а именно, в рамках метода наименьших квадратов (МНК) задачу нахождения минимума суммы квадратов (y(xi) — yi)2.

Итак, вот данные, которые будем использовать в качестве примера. Пики посещаемости (ряд Views, красный пунктир) приходятся на моменты выходя статей. Второй ряд данных (Regs, с множителем 100) показывает число читателей, выполнивших после прочтения определенное действие (регистрацию и скачивание Mathcad Express – с его помощью, к слову, вы сможете повторить все расчеты этой и предыдущих статей). Все картинки — это скриншоты Mathcad Express, а файл с расчетами вы можете взять здесь.
Машинное обучение — 2. Нелинейная регрессия и численная оптимизация - 1

Читать полностью »

Обзор наиболее интересных материалов по анализу данных и машинному обучению №38 (2 — 8 марта 2015) - 1
Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения.
Читать полностью »

Привет!

Как мы писали ранее, 29 июля в Санкт-Петербурге в седьмой раз откроется ежегодная Летняя школа Microsoft Research по машинному обучению.
Обычно следующий за открывающим постом пост пишут, когда известны докладчики, но тут я не смог удержаться.

Седьмая ежегодная Летняя школа Microsoft Research по машинному обучению и интеллекту — сотрудничество с ACM Europe - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js