Рубрика «машинное обучение» - 253

Обзор наиболее интересных материалов по анализу данных и машинному обучению №36 (16 — 22 февраля 2015) - 1
Представляю вашему вниманию очередной выпуск обзора наиболее интересных материалов, посвященных теме анализа данных и машинного обучения.
Читать полностью »

Привет!

image

В прошлый раз мы рассмотрели замечательный инструмент Vowpal Wabbit, который бывает полезен в случаях, когда приходится обучаться на выборках, не помещающихся в оперативную память. Напомним, что особенностью данного инструмента является то, что он позволяет строить в первую очередь линейные модели (которые, к слову, имеют хорошую обобщающую способность), а высокое качество алгоритмов достигается за счет отбора и генерации признаков, регуляризации и прочих дополнительных приемов. Сегодня рассмотрим инструмент, который более популярен и предназначен для обработки больших обьемов данных — Apache Spark.
Читать полностью »

Привет!

29 июля, в очередной, уже седьмой раз, в Санкт-Петербурге откроется ежегодная Летняя школа Microsoft Research. На этот раз тема школы – машинное обучение и интеллект. В программу школы включены лекции и семинары ученых мирового уровня из ведущих университетов со всего мира, в том числе из России, а также исследователей Microsoft Research. Руководитель школы – Эвелин Виегас, директор направления «семантические вычисления» Microsoft Research Redmond. Подробности под катом.

Седьмая ежегодная Летняя школа Microsoft Research. На этот раз про машинное обучение и интеллект - 1
Читать полностью »

Как и обещал, начинаю цикл статей по «машинному обучению». Эта будет посвящена таким понятиям из статистики, как корреляция случайных величин и линейная регрессия. Рассмотрим, как реальные данные, так и модельные (симуляцию Монте-Карло).

Часть 1. Реальные данные

Чтобы было интереснее, рассказ построен на примерах, причем в качестве данных (и в этой, и в следующих, статьях) я буду стараться брать статистику прямо отсюда, с Хабра. А именно, неделю назад я написал свою первую статью на Хабре (про Mathcad Express, в котором и будем все считать). И вот теперь статистику по ее просмотрам за 10 дней и предлагаю в качестве исходных данных. На графике это ряд Views, синяя линия. Второй ряд данных (Regs, с коэффициентом 100) показывает число читателей, выполнивших после прочтения определенное действие (регистрацию и скачивание дистрибутива Mathcad Prime).

Машинное обучение — 1. Корреляция и регрессия. Пример: конверсия посетителей сайта - 1
Читать полностью »

Подъем, овощи!

Все, кто еще не, срочно идем и регистрируемся на курс CS188.1x — «Artificial Intelligence». Курс стартовал 6.2.2015 и уже доступны материалы второй недели (первая проходится за три часа — она вводная). Оправдание принимается только одно — «не понимаю по-английски». В этом случае идешь и начинаешь учить английский!
Читать полностью »

Аннотация
Люди — это самые важные объекты слежения в системах видеонаблюдения. Тем не менее, слежение за человеком само по себе не дает достаточной информации об его мотивах, намерениях, желаниях и т.п. В этой работе мы представляем новую и надежную систему для автоматической оценки возраста с помощью технологий компьютерного зрения. Она использует глобальные особенности лица, полученные на основе комбинирования вейвлетов Габора и сохранение ортогональности локальных проекций Orthogonal Locality Preserving Projections, OLPP). Кроме того, система способна оценивать возраст по изображениям в реальном времени. Это означает, что предлагаемая система имеет больший потенциал по сравнению с другими полуавтоматическими системами. Результаты, полученные в процессе применения предлагаемого подхода, могут позволить получить более ясное понимание алгоритмов в области оценки возраста, необходимых для разработки приложений, актуальных для реального применения.
Ключевые слова: вейвлеты Габора, изображение лица, оценка возраста, метод опорных векторов (Support Vector Machine, SVM).
Читать полностью »

Скорее всего, если вы зашли на Хабр и читаете эту статью, то хоть раз в жизни да слышали про MOOC-курсы.

Но если все же не слышали, то MOOC (по-русски принято произносить «мук») означает «Massive Open Online Course» — массовый открытый онлайн-курс. Это настоящий феномен в образовании XXI века. Газета «New York Times» назвала даже 2012 год «годом MOOC» в связи с появлением на рынке дистанционного образования 3-х «китов» — Coursera, Udacity и EdX. MOOC-ам посвящено множество статей, кто-то видит в них будущее образования, кто-то, наоборот, угрозу. Пытаются также предсказать «традиционную» и «дистанционную» составляющии обучения будущего.

Обзор некоторых MOOC Coursera по компьютерным наукам - 1 Обзор некоторых MOOC Coursera по компьютерным наукам - 2 Обзор некоторых MOOC Coursera по компьютерным наукам - 3
Обзор некоторых MOOC Coursera по компьютерным наукам - 4 Обзор некоторых MOOC Coursera по компьютерным наукам - 5 Обзор некоторых MOOC Coursera по компьютерным наукам - 6

Однако в этой статье я не буду обсуждать перспективы развития дистанционного образования, а расскажу про свой опыт знакомства с курсами на платформе Coursera. Эти курсы будут полезны студентам, изучающим прикладную математику и информатику, в особенности анализ данных. Многое из того, что мне дали эти курсы, как я потом понял — это знания, которыми должен обладать любой уважающий себя исследователь данных (так я предпочитаю переводить профессию Data Scientist).
Читать полностью »

Новая функция станет ответом на Skype Translate

Google работает над системой перевода речи в реальном времени - 1«Нью-Йорк таймс» сообщает, что компания Google собирается выпустить обновлённую версию приложения Google Translate для мобильных устройств на операционной системе Android. В приложение добавят возможность синхронного перевода речи. Официального объявления от Google пока не поступало.

На данный момент Google Translate уже умеет переводить речь человека, но функция далека от того, о чём мечтали авторы научной фантастики. Смартфон нужно поставить на запись и ждать, когда будет готов машинный перевод.

В обновлении добавят систему, которая будет распознавать речь нескольких наиболее распространённых языков и преобразовывать её в текст. Перевод будет готов немедленно.
Читать полностью »

Только что в Париже на конференции La Web Яндекс объявил об открытии нового важного направления своей деятельности — по коммерческой обработке больших данных — Yandex Data Factory.

Мы верим, что обработка больших данных — это часть нового витка технической революции, который сделает всё человечество ещё более эффективным и приведёт нас к будущему, которое мы сейчас ещё даже не можем до конца представить. И в нём работа с большими объёмами данных будет не менее важным и распространённым, чем выработка электричества или железные дороги сегодня.

Yandex Data Factory - 1

Перед публичным запуском Yandex Data Factory мы провели несколько пилотных проектов с компаниями-партнёрами. Для компании, обслуживающей линии электропередач, в Yandex Data Factory создали систему, которая анализирует сделанные беспилотниками снимки и автоматически выявляет угрозы: например, деревья, растущие слишком близко к проводам. А для автодорожного агентства проанализировали данные о загруженности дорог, качестве покрытия, средней скорости движения транспорта и аварийности. Это позволило в режиме реального времени составлять прогноз заторов на дорогах на ближайший час и выявлять участки с высокой вероятностью ДТП.
Читать полностью »

Только что в Париже на конференции La Web Яндекс объявил об открытии нового важного направления своей деятельности — по коммерческой обработке больших данных — Yandex Data Factory.

Мы верим, что обработка больших данных — это часть нового витка технической революции, который сделает всё человечество ещё более эффективным и приведёт нас к будущему, которое мы сейчас ещё даже не можем до конца представить. И в нём работа с большими объёмами данных будет не менее важным и распространённым, чем выработка электричества или железные дороги сегодня.

Яндекс открывает новое направление своей деятельности — Yandex Data Factory - 1

Перед публичным запуском Yandex Data Factory мы провели несколько пилотных проектов с компаниями-партнёрами. Для компании, обслуживающей линии электропередач, в Yandex Data Factory создали систему, которая анализирует сделанные беспилотниками снимки и автоматически выявляет угрозы: например, деревья, растущие слишком близко к проводам. А для автодорожного агентства проанализировали данные о загруженности дорог, качестве покрытия, средней скорости движения транспорта и аварийности. Это позволило в режиме реального времени составлять прогноз заторов на дорогах на ближайший час и выявлять участки с высокой вероятностью ДТП.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js