Рубрика «машинное обучение» - 25

"Я хочу быть объективным. Я знаю, что спасение человечества, нашей планеты в объективности." (Виктор Конецкий, "Солёный лёд")

Цифровой вытрезвитель - 1

Читать полностью »

Бывает листаешь книгу или журнал, видишь красивое место или здание, но не знаешь, где оно и как называется. Тут пригодилось бы приложение, которое распознает его по фотографии.

С помощью машинного обучения создать такое приложение довольно просто. Об этом и пойдет речь в этой статье.

О распознавании достопримечательностей

Читать полностью »

image

Сейчас для всех желающих доступны два наших сервиса для распознавания речи:

  • Бот в телеграме для коротких и не очень длинных аудио (мы не стали обходить ограничения телеграма, основная задача бота — распознавать голосовые сообщения);
  • Сервис audio-v-text.silero.ai для более длинных аудио, в котором можно скачать отчет в виде эксельки.

Сервис написан нашими собственными силами, работает на нашем собственном движке распознавания речи, без проксирования во внешние сервисы и с минимально возможным количеством зависимостей. В случае нарушения связности возможен оперативный перевод хостинга в другие регионы.

Мы провели и продолжаем работу над ошибками и внесли ряд улучшений для пользователей, о которых мы бы хотели рассказать.

Читать полностью »

Визуальный SLAM: делаем HD-карты при помощи смартфона - 1

Привет! Меня зовут Александр Гращенков, я iOS-разработчик в компании RoadAR. С 2016 года живу и работаю в Иннополисе, занимаюсь компьютерным зрением и интеграцией нейросетей в мобильные платформы.

Читать полностью »

Прим. Wunder Fund: В сегодняшней статье рассказываем, как Уберу удается точно предсказывать время прибытия такси или курьера. Мы нашли её очень увлекательной, как и несколько других статьей из технического блога Убера.

Читать полностью »

X5 Tech приглашает студентов и выпускников вузов пройти бесплатное обучение по профессии Data Analyst. Уже через три месяца обучения можно будет пройти оплачиваемую стажировку в Х5 Group.

Школа аналитиков данных - 1
  • Начало отбора — 21 февраля.

  • Старт обучения — 29 марта.

  • Срок обучения — 8 месяцев, вторник и четверг в 19:00.

Подробности и подача заявки

Программа обучения

  1. Читать полностью »

Во многих популярных курсах машинного и глубокого обучения вас научат классифицировать собак и кошек, предсказывать цены на недвижимость, покажут еще десятки задач, в которых машинное обучение, вроде как, отлично работает. Но вам расскажут намного меньше (или вообще ничего) о тех случаях, когда ML-модели не работают так, как ожидалось.

Частой проблемой в машинном обучении является неспособность ML-моделей корректно работать на большем разнообразии примеров, чем те, что встречались при обучении. Здесь идет речь не просто о других примерах (например, тестовых), а о других типахЧитать полностью »

Всем привет! Эта статья - обобщение моего опыта 30+ проектов, связанных с обработкой данных и машинным обучением. Здесь не будет теории про управление рисками и общего перечня проектных рисков. Я перечислил только наиболее частые “грабли” именно из data-специфики, с которыми приходилось сталкиваться за последние 7 лет. Надеюсь, что эта статья поможет менеджеру проекта или менеджеру продукта сохранить свой цвет волос, ценное время команды и удовлетворенность заказчиков. Риски я разделил на три группы:

  • риски моделей машинного обучения,

  • риски источников данных,

  • риски пользовательских данных.

Читать полностью »

Приветствую, читатели! Сегодня речь пойдёт об одном, на мой взгляд, интересном варианте алгоритма для самообучающейся системы. Идея подобной статьи зрела давно, однако руки всё не доходили.

Рассматриваемую ниже модель можно спокойно отнести к областям эволюционного моделирования и роевого интеллекта, однако с заделом на дальнейшую интеграцию с существующими наработками в области нейросетей. Но, обо всём по порядку.

Мотивация

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js