Рубрика «машинное обучение» - 237

Приложение на API hh.ru. Рекомендуем вакансии по вашему резюме - 1
Недавно я опубликовал пост, рассказывающий, как можно просто начать использовать наше API. Мне самому захотелось поиграться с данными, которые можно из него получить, и я решил написать приложение, рекомендующее актуальные вакансии на основе информации из резюме. В конце статьи будет ссылка на результат, где каждый сможет получить список рекомендаций по своему резюме.
Читать полностью »

Доброго времени суток!

Мы решили дать публичный доступ к архиву 1 млн насыщенных мета-данными сообщений соцмедиа (несколько сотен источников, включая посты и комментарии соцсетей, блогов, форумов, СМИ и т.п.).
Предлагаем попробовать свои силы в создании различных эвристик, закладываемых в классические SMA-системы (Social Media Analytics). Чем больше эвристик вы придумаете и сможете реализовать, тем выше ваш класс в Data Scientist. Возможно в вас живет настоящий профи: Data Scientist — одна из крутых профессий ближайшего будущего!

Для состоявшихся фанатов-профи — это возможность проверить и показать свои способности, а также, при обоюдном желании и радости, получить годовой контракт на $30.000 — $50.000.

Работа мечты и бесплатный кластер на 1 миллион мета-данных - 1

Подробнее под катом
Читать полностью »

В процессе подготовки задачи для вступительного испытания на летнюю школу GoTo, мы обнаружили, что на русском языке практически отсутствует качественное описание основных метрик ранжирования (задача касалась частного случая задачи ранжирования — построения рекомендательного алгоритма). Мы в E-Contenta активно используем различные метрики ранжирования, поэтому решили исправить это недоразуменее, написав эту статью.

Метрики качества ранжирования

Читать полностью »

Будущее компьютерных технологий: обзор современных трендов - 1

Сфера информационных технологий развивается в двух преимущественно независимых циклах: продуктовом и финансовом. В последнее время не утихают споры о том, на каком этапе финансового цикла мы находимся; очень много внимания уделяется финансовым рынкам, которые подчас ведут себя непредсказуемо и сильно колеблются. С другой стороны, продуктовым циклам достается относительно мало внимания, хотя именно они двигают информационные технологии вперед. Но, анализируя опыт прошлого, можно попытаться понять текущий продуктовый цикл и предугадать дальнейшее развитие технологий.

Читать полностью »

Machine Learning Boot Camp — как это было и как это будет - 1

13 июня стартовал ML Boot Camp — состязание по машинному обучению от Mail.Ru Group. В связи с этим мы хотим поделиться с вами впечатлениями о его предыдущем запуске, историями успеха победителей и рассказываем, что нового ждет участников в этом году.
Читать полностью »

Привет! Три месяца назад мы объявили о старте соревнования по машинному обучению BlackBox Challenge, а недавно оно закончилось. В этом посте организаторы соревнования расскажут о том, как всё прошло.

Итоги Black Box Challenge - 1


Вдохновившись результатами Google DeepMind по reinforcement learning, мы поняли, как здорово, когда система не использует человеческую экспертизу, а сама учится понимать окружающую среду. Мы решили сделать соревнование, в котором участникам нужно создать как раз такую систему.
Читать полностью »

image

Apple показала на WWDC 2016 новые iOS 10 и macOS Sierra, и я не упустил возможность сразу же обновить свои устройста.

Одно из ключевых обновлений — появление SiriKit для разработчиков, теперь у нас с вами есть возможность использовать Siri в собственных приложениях. И мы сегодня сделаем наше первое приложение с поддержкой Siri (исходники проекта в конце статьи)
Читать полностью »

Буду потихоньку дорассказывать про Inception.
Предыдущая часть здесь — https://habrahabr.ru/post/302242/.
Мы остановились на том, Inception-v3 не выиграл Imagenet Recognition Challange в 2015-м, потому что появились ResNets (Residual Networks).

Что такое вообще ResNets?

Эволюция нейросетей для распознавания изображений в Google: Inception-ResNet - 1Читать полностью »

В будущем, как нам кажется, все популярные браузеры выйдут за рамки программ для открытия веб-страниц и научатся лучше понимать людей, которые ими пользуются. Сегодня я расскажу вам, каким мы видим это будущее на примере персональной ленты Дзен в Яндекс.Браузере, которая теперь доступна пользователям Windows, Android и iOS.

Будущее браузеров и искусственный интеллект. Дзен в Яндекс.Браузере - 1

Несмотря на кажущуюся простоту, в основе Дзена лежат довольно сложные технологии. Я расскажу немного о том, как это реализовано у нас, где и почему мы использовали традиционное машинное обучение, а где — нейронные сети и искусственный интеллект, и буду благодарен за ваше мнение об этом подходе.

Читать полностью »

Команда Retail Rocket использует узкоспециализированный стек технологий Hadoop + Spark для вычислительного кластера, о котором мы уже писали обзорный материал в самом первом посте нашего инженерного блога на Хабре.

Готовых специалистов для таких технологий найти довольно сложно, особенно, если учесть, что программируем мы исключительно на Scala. Поэтому я стараюсь найти не готовых специалистов, а людей, имеющих минимальный опыт работы, но обладающих большим потенциалом. Мы берем даже людей с частичной занятостью, чтобы было удобно совмещать учебу и работу, если кандидат — студент последних курсов.

Курс молодого бойца для Spark-Scala - 1

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js