Рубрика «машинное обучение» - 236

Если вы захотите встроить искусственный интеллект в каждый продукт, вам придётся переобучать вашу армию программистов. Ставим галочку

Карсон Холгейт [Carson Holgate] тренируется на ниндзя. Но не в рукопашном бою – это она уже освоила. Ей 26 лет, и у неё чёрный пояс второго дана по тхэквондо. На этот раз она тренируется в алгоритмах – и вот уже несколько недель проходит программу, которая даст ей силу даже большую, чем дает рукопашный бой. Это машинное обучение, МО. Она работает программистом в Google, в подразделении Android. Холгейт – одна из 18 программистов, участвующих в этом году в программе «Ниндзя машинного обучения», которая выдёргивает талантливых кодеров из их команд и вводит в программу в стиле «Игра Эндера». В рамках программы их обучают техникам внедрения ИИ, которые должны сделать их продукты умнее. Даже ценой усложнения их программ.

Google ставит машинное обучение во главу угла - 1

«Наш слоган: „Хотите стать ниндзя в машинном обучении?“,- говорит Кристин Робсон, менеджер продукта в области МО во внутренних курсах Google, помогавшая внедрять программу. „Мы приглашаем людей из Google, чтобы провести шесть месяцев внутри команды МО, находиться рядом с наставником, работать над МО полгода, делать свой проект, запускать его и обучаться в процессе“.

Для Холгейт, пришедшей в Google почти четыре года назад с дипломом по информатике и математике, это шанс овладеть самой горячей парадигмой мира софта. Используя обучающиеся алгоритмы и большие объёмы данных, „обучать“ программы выполнению задач. Много лет МО было специальностью, которой владели немногие, „элита“. Это время прошло, и есть мнение, что МО, питаемое нейросетями, эмулирующими работу биологического мозга – это истинный путь по наделению компьютеров возможностями человека, а иногда – и сверхчеловека. Google настроен на увеличение численности этой элиты в своей компании, и надеется, что эти знания станут нормой. Программистам вроде Холгейт эта программа может позволить занять место в первых рядах, и учиться у лучших из лучших. „Эти люди делают невероятные модели, имея при этом степени доктора наук,- говорит она, не скрывая восхищения. Она уже привыкла к тому, что участвует в программе, называющей своих учащихся “ниндзя». – Я сперва морщилась, но привыкла".

Учитывая огромное количество сотрудников компании – почти половина из 60 000 работают программистами – этот проект очень мал. Но программа символизирует когнитивный сдвиг. Хотя МО уже давно используется в технологиях Google – и компания уже стала лидером по найму экспертов в этой области – в 2016 году Google просто помешалась на этой теме. На конференции по обучению в конце прошлого года директор Сандар Пичай пояснил намерения корпорации: «МО – это ядро, путь преобразований, через который мы меняем представление о том, как мы достигаем наших целей. Мы вдумчиво применяем его во всех продуктах – будь то поиск, реклама, YouTube или Play. Мы ещё в начале пути, но вы увидите, что мы систематически будем применять машинное обучение во всех этих областях».
Читать полностью »

Всем привет!

Меня зовут Алексей. Я Data Scientist в компании Align Technology. В этом материале я расскажу вам о подходах к feature selection, которые мы практикуем в ходе экспериментов по анализу данных.

В нашей компании статистики и инженеры machine learning анализируют большие объемы клинической информации, связанные с лечением пациентов. В двух словах смысл этой статьи можно свести к извлечению ценных крупиц знания, содержащихся в небольшой доле доступных нам зашумленных и избыточных гигабайтов данных.

Данная статья предназначена для статистиков, инженеров машинного обучения и специалистов, которые интересуются вопросами обнаружения зависимостей в наборах данных. Также материал, изложенный в статье, может быть интересен широкому кругу читателей, неравнодушных к data mining. В материале не будут затронуты вопросы feature engineering и, в частности, применения таких методов как анализ главных компонент.

Читать полностью »

Собственно, после одного из недавних постов @IBM возникла идея скрестить ежа с ужом Dialog с Natural Language Classifier. Причём тут Токио? А при наличии возможности определить его как сущность типа «город» в dialog и сохранить в профиле для обработки. Впрочем, именно получения погоды под катом не будет. Однако, по идее, можно прицепить обработку соответствующей «команды».

Перед началом работы понадобится зарегистрироваться в Bluemix, создать приложение и получить учётные данные для Dialog и Natural Language Classifer. Само же приложение может быть локальным.
Читать полностью »

Игра Престолов. Поиск авторов диалогов в книгах - 1

Привет Хабрахабр,

На основании результата голосования в статье Теория Графов в Игре Престолов, я перевожу обучающий материал Эрика Германи (Erik Germani), который получил социальный граф связей из 5 первых книг серии «Песнь льда и пламени», лёгший в основу вышеупомянутой статьи. Статья не содержит подробного описания методов машинного обучения, а скорее рассказывает как на практике можно использовать существующие инструменты для поиска авторов диалогов в тексте. Осторожно, много букв! Поехали.
Читать полностью »

Привет! В этом посте мы хотим поделиться нашим решением задачи по предсказанию скрытых связей в корпоративной социальной сети “Улей” компании Билайн. Эту задачу мы решали в рамках виртуального хакатона Microsoft. Надо сказать, что до этого хакатона у нашей команды уже был успешный опыт решения таких задач на хакатоне от Одноклассников и нам очень хотелось опробовать наши наработки на новых данных. В статье мы расскажем про основные подходы, которые применяются при решении подобных задач и поделимся деталями нашего решения.
Читать полностью »

Как работает метод главных компонент (PCA) на простом примере - 1

В этой статье я бы хотел рассказать о том, как именно работает метод анализа главных компонент (PCA – principal component analysis) с точки зрения интуиции, стоящей за ее математическим аппаратом. Максимально просто, но подробно.
Читать полностью »

Недавно у меня было видение. Я шёл по оживлённой улице. Она была полна незнакомыми мне людьми, спешащими по своим делам. Едва окинув взором идущих мне навстречу, я понимал потребности, чувства и желания некоторых из них. Для этого мне не нужно было вступать в диалог с ними. Я даже не пытался установить визуальный контакт с любым незнакомцем из толпы, чтобы понять, что у него на уме…
Дополненная реальность и социализация людей на новом уровне - 1
Читать полностью »

image

27 мая в офисе Mail.Ru Group прошёл очередной Moscow Data Science Meetup. На встрече собирались представители крупных российских компаний и научных организаций, а также энтузиасты в области машинного обучения, рекомендательных систем анализа социальных графов и смежных дисциплин. Гости делились друг с другом своим опытом решения практических задач анализа данных. Предлагаем вашему вниманию видеозаписи и презентации трёх докладов, представленных на встрече.
Читать полностью »

Вдохновлено недавним Hola Javascript Challenge. Упаковывать алгоритм в 64кб не будем, но зато точность получим пристойную.
Читать полностью »

Продолжает серию интервью с докладчиками PyCon Russia разговор с Мартином Горнером (Париж, Франция).

Мартин Горнер (Martin Gorner) стоял у истоков зарождения электронных книг, начиная с запуска Mobipocket, который позже стал частью программного обеспечения на Amazon Kindle и его мобильных вариантов, а с 2011 года Мартин работает в Google, где активно занимается машинным обучением и TensorFlow — принципиально новой, быстрой, умной и гибкой системой машинного обучения, которая способна работать как на простом смартфоне, так и на тысячах узлов в центрах обработки данных.

Ниже — короткое интервью с Мартином о том, что из себя представляет TensorFlow, почему Google открыли TensorFlow для разработчиков в open source, и чем система может быть интересна разработчику, не знакомому с машинным обучением.

Интервью с программистом из Google Мартином Горнером о TensorFlow - 1

3-4 июля Мартин будет на конференции PyCon Russia 2016

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js