Рубрика «машинное обучение» - 233

Часть 1 — линейная регрессия

В первой части я забыл упомянуть, что если случайно сгенерированные данные не по душе, то можно взять любой подходящий пример отсюда. Можно почувствовать себя ботаником, виноделом, продавцом. И все это не вставая со стула. В наличии множество наборов данных и одно условие — при публикации указывать откуда взял данные, чтобы другие смогли воспроизвести результаты.

Градиентный спуск

В прошлой части был показан пример вычисления параметров линейной регрессии с помощью метода наименьших квадратов. Параметры были найдены аналитически — Математика для искусственных нейронных сетей для новичков, часть 2 — градиентный спуск - 1, где Математика для искусственных нейронных сетей для новичков, часть 2 — градиентный спуск - 2 — псевдообратная матрица. Это решение наглядное, точное и короткое. Но есть проблема, которую можно решить численно. Градиентный спуск — метод численной оптимизации, который может быть использован во многих алгоритмах, где требуется найти экстремум функции — нейронные сети, SVM, k-средних, регрессии. Однако проще его воспринять в чистом виде (и проще модифицировать).

Читать полностью »

Kaggle — это платформа для проведения конкурсов по машинному обучению. На Хабре частенько пишут про неё: 1, 2, 3, 4, и.т.д.
Конкурсы на Kaggle интересные и практичные. Первые места обычно сопровождаются неплохими призовыми (топовые конкурсы — более 100к долларов). В последнее время на Kaggle предлагали распознавать:

И многое-многое другое.
Мне давно хотелось попробовать, но что-то всё время мешало. Я разрабатывал много систем, связанных с обработкой изображений: тематика близка. Навыки более лежат в практической части и классических Computer Vision (CV) алгоритмах, чем в современных Machine Learning техниках, так что было интересно оценить свои знания на мировом уровне плюс подтянуть понимание свёрточных сетей.
И вот внезапно всё сложилось. Выпало пару недель не очень напряжённого графика. На kaggle проходил интересный конкурс по близкой тематике.Я обновил себе комп. А самое главное — подбил vasyutka и Nikkolo на то, чтобы составить компанию.
Сразу скажу, что феерических результатов мы не достигли. Но 18 место из 1.5 тысяч участников я считаю неплохим. А учитывая, что это наш первый опыт участия в kaggle, что из 3х месяц конкурса мы участвовали лишь 2.5 недели, что все результаты получены на одной единственной видеокарте — мне кажется, что мы хорошо выступили.
О чём будет эта статья? Во-первых, про саму задачу и наш метод её решения. Во-вторых, про процесс решения CV задач. Я писал достаточно много статей на хабре о машинном зрении(1,2,3), но писанину и теорию всегда лучше подкреплять примером. А писать статьи по какой-то коммерческой задаче по очевидным причинам нельзя. Теперь наконец расскажу про процесс. Тем более что тут он самый обычный, хорошо иллюстрирующий как задачи решаются. В-третьих, статья про то, что идёт после решения идеализированной задаче в вакууме: что будет когда задача столкнётся с реальностью.
Kaggle – наша экскурсия в царство оверфита - 1
Читать полностью »

Кажется, не проходит и дня, чтобы на Хабре не появлялись посты о нейронных сетях. Они сделали машинное обучение доступным не только большим компаниям, но и любому человеку, который умеет программировать. Несмотря на то, что всем кажется, будто о нейросетях уже всем все известно, мы решили поделиться обзорной лекцией, прочитанной в рамках Малого ШАДа, рассчитанного на старшеклассников с сильной математической подготовкой.

Материал, рассказанный нашим коллегой Константином Лахманом обобщает историю развития нейросетей, их основные особенности и принципиальные отличия от других моделей, применяемых в машинном обучении. Также речь пойдёт о конкретных примерах применения нейросетевых технологий и их ближайших перспективах. Лекция будет полезна тем, кому хочется систематизировать у себя в голове все самые важные современные знания о нейронных сетях.

Константин klakhman Лахман закончил МИФИ, работал исследователем в отделе нейронаук НИЦ «Курчатовский институт». В Яндексе занимается нейросетевыми технологиями, используемыми в компьютерном зрении.

Под катом — подробная расшифровка со слайдами.
Читать полностью »

Введение.

image
На той неделе darkk описал свой подход к проблеме распознавания состояния моста(сведён/разведён).

Алгоритм, описанный в статье использовал методы компьютерного зрения для извлечения признаков из картинок и скармливал их логистической регрессии для получения оценки вероятности того, что мост сведён.

В комментариях я попросил выложить картинки, чтобы можно было и самому поиграться. darkk на просьбу откликнулся, за что ему большое спасибо.

В последние несколько лет сильную популярность обрели нейронные сети, как алгоритм, который умудряется в автоматическом режиме извлекать признаки из данных и обрабатывать их, причём делается это настолько просто с точки зрения того, кто пишет код и достигается такая высокая точность, что во многих задачах (~5% от всех задач в машинном обучении) они рвут конкурентов на британский флаг с таким отрывом, что другие алгоритмы уже даже и не рассматриваются. Одно из этих успешных для нейронных сетей направлений — работа с изображениями. После убедительной победы свёрточных нейронных сетей на соревновании ImageNet в 2012 году публика в академических и не очень кругах возбудилась настолько, что научные результаты, а также програмные продукты в этом направлении появляются чуть ли не каждый день. И, как результат, использовать нейронные сети во многих случаях стало очень просто и они превратились из "модно и молодёжно" в обыкновенный инструмент, которым пользуются специалисты по машинному обучению, да и просто все желающие.

Читать полностью »

8 лекций, которые помогут разобраться в машинном обучении и нейросетях - 1

Мы собрали интересные лекции, которые помогут понять, как работает машинное обучение, какие задачи решает и что нам в ближайшем будущем ждать от машин, умеющих учиться. Первая лекция рассчитана скорее на тех, кто вообще не понимает, как работает machine learning, в остальных много интересных кейсов.Читать полностью »

image

В этой статье речь пойдет о логистической регрессии и ее реализации в одном из наиболее производительных пакетов машинного обучения "R" — "XGboost" (Extreme Gradient Boosting).
В реальной жизни мы довольно часто сталкиваемся с классом задач, где объектом предсказания является номинативная переменная с двумя градациями, когда нам необходимо предсказать результат некого события или принять решения в бинарном выражении на основании модели данных. Например, если мы оцениваем ситуацию на рынке и нашей целью является принятие однозначного решения, имеет ли смысл инвестировать в определенный инструмент в данный момент времени, купит ли покупатель исследуемый продукт или нет, расплатится ли заемщик по кредиту или уволится ли сотрудник из компании в ближайшее время и.т.д. Читать полностью »

Несмотря на отсутствие интереса у широкой публики к диковинной библиотеке из мира физики, продолжу обещанный рассказ о том, как можно применять полученную модель на практике, заодно попытаюсь более подробно раскрыть тему эксклюзивности TMVA.
Допустим, Вы работаете в проекте, требующем максимального быстродействия системы (геймдев, картографический сервис или же данные с коллайдера), тогда очевидно, что Ваш код написан на языке, который предельно близок к железу — C/C++. И однажды возникает необходимость добавить к сервису какую-то математику в зависимости от потребностей проекта. Обычно взгляд падает на змеиный язык, который имеет множество удобных математических библиотек для прототипирования идей, но при этом бесполезном в работе с действительно большим объёмом данных и поедающем словно удав все ресурсы машины.Читать полностью »

rq Каждый должен делать свою работу качественно и в срок. Допустим, вам нужно сделать веб-сервис классификации картинок на базе обученной нейронной сети с помощью библиотеки caffe. В наши дни качество — это асинхронные неблокирующие вызовы, возможность параллельного исполнения нескольких заданий при наличии свободных процессорных ядер, мониторинг очередей заданий… Библиотека RQ позволяет реализовать все это в сжатые сроки без изучения тонны документации.

Сделаем веб-сервис на одном сервере, ориентированный на несильно нагруженные проекты и сравнительно длительные задания. Естественно, его применение не ограничивается этими вашими нейронными сетями.

Читать полностью »

Нигде, наверно, нет такой насущной необходимости в синергии знаний разных областей науки — как в области машинного обучения и Deep Learning. Достаточно открыть капот TensorFlow и ужаснуться — огромное количество кода на python, работающее с тензорами внутри… C++, вперемешку с numpy, для выкладки в продакшн требующее чуток покодить «на плюсах», вприкуску с bazel (это так волнует, всю жизнь мечтал об этом!). И другая крайность — ребята из Deeplearning4j прокляли python к чертовой матери и вращают тензоры на старой и доброй java. Но дальше всех ушли, похоже, студенты из университета Нью-Йорка — люди, причем не только студенты, причем давно и серьезно жгут на Luajit + nginx (аминь по католически). Ситуация осложняется недавним демаршем Google DeepMind в отношении «дедушки torch»: все проекты переводят на свой внутренний движок, родившийся из DistBelief.
Полнейший хаос и бардак.
Читать полностью »

Введение

Этим постом я начну цикл «Нейронные сети для новичков». Он посвящен искусственным нейронным сетям (внезапно). Целью цикла является объяснение данной математической модели. Часто после прочтения подобных статей у меня оставалось чувство недосказанности, недопонимания — НС по-прежнему оставались «черным ящиком» — в общих чертах известно, как они устроены, известно, что делают, известны входные и выходные данные. Но тем не менее полное, всестороннее понимание отсутствует. А современные библиотеки с очень приятными и удобными абстракциями только усиливают ощущение «черного ящика». Не могу сказать, что это однозначно плохо, но и разобраться в используемых инструментах тоже никогда не поздно. Поэтому моей первичной целью является подробное объяснение устройства нейронных сетей так, чтобы абсолютно ни у кого не осталось вопросов об их устройстве; так, чтобы НС не казались волшебством. Так как это не математический трактат, я ограничусь описанием нескольких методов простым языком (но не исключая формул, конечно же), предоставляя поясняющие иллюстрации и примеры.

Цикл рассчитан на базовый ВУЗовский математический уровень читающего. Код будет написан на Python3.5 с numpy 1.11. Список остальных вспомогательных библиотек будет в конце каждого поста. Абсолютно все будет написано с нуля. В качестве подопытного выбрана база MNIST — это черно-белые, центрированные изображения рукописных цифр размером 28*28 пикселей. По-умолчанию, 60000 изображений отмечены для обучения, а 10000 для тестирования. В примерах я не буду изменять распределения по-умолчанию.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js