Рубрика «машинное обучение» - 224

Роботы будущего будут обучаться благодаря любопытству и самостоятельному определению целей - 1

Представьте себе, что друг просит вас помочь прибраться в его комнате, полной разных вещей и мебели. Но представьте также, что помогать вам в этом он не будет, а просто опишет вам, показав фотографии, то, как ему хотелось бы, чтобы его комната выглядела в итоге. Задача может показаться скучной, но любой из нас справится с ней. Будучи детьми, мы открывали новые объекты, научились распознавать их и выработали навыки обращения с ними. Подталкиваемые любопытством, мы постепенно нарабатывали визуальное, внимательное и сенсорно-моторное знание, позволяющее нам, взрослым, обращаться с нашим физическим окружением по нашему выбору.

Сегодняшние роботы не приспособлены для таких задач. Представьте гуманоидного робота, помогающего прибираться в комнате. Допустим, вы показали роботу комнату в нормальном, убранном состоянии, и когда в ней наступил беспорядок, вы приказываете роботу убрать её до первоначального состояния. В таких условиях было бы очень утомительно учить робота тому, куда направлять внимание, и как управляться с каждым из объектов, чтобы положить его в правильной позиции на нужное место, или как выстроить последовательность действий.
Читать полностью »

Разработка интеллектуальных систем распознавания данных становится все более актуальной по мере развития интернета вещей и стремительного увеличения количества информации, которую собирают и которой обмениваются устройства: от камер систем безопасности до спутников, производящих съемку поверхности Земли. Однако анализ этой информации и последующее принятие решений пока остается за человеком: в силу естественных ограничений он не может быстро обрабатывать большие объемы данных и поэтому остается “узким местом” в процессе сбора и управления информацией.

Фонд перспективных исследований: конкурс на лучшую интеллектуальную технологию дешифрирования аэрокосмической информации - 1
Читать полностью »

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 1 - 1

За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.
Читать полностью »

В наши дни онлайн-игры весьма популярны, особенно среди молодёжи. Играми занимают свободное время, нередко виртуальными соратниками или врагами становятся члены семей или друзья. Во многих случаях игрокам нужно что-либо покупать для того, чтобы улучшить своего персонажа и получить преимущество перед другими геймерами.

Машинное обучение и Intel Xeon: рекомендательная система для внутриигровых покупок Tencent - 1


— Лошадью ходи, век воли не видать!

Для того, чтобы усовершенствовать способы взаимодействия с пользователями, Tencent внедрила рекомендательную систему. Эта система построена на основе методов машинного обучения и призвана помогать пользователям принимать решения о внутриигровых покупках.
Читать полностью »

Когда речь заходит про машинное обучение, обычно подразумевают большие объемы данных — миллионы или даже миллиарды транзакций, из которых надо сделать сложный вывод о поведении, интересах или текущем cостоянии пользователя, покупателя или какого-нибудь аппарата (робота, автомобиля, дрона или станка).
Однако в жизни обычного аналитика самой обычной компании много данных встречается нечасто. Скорее даже наоборот — у вас будет мало или очень мало данных — буквально десятки или сотни записей. Но анализ все же нужно провести. Причем не какой попало анализ, а качественный и достоверный.

Зачастую ситуация усугубляется еще и тем, что вы без труда можете нагенерить для каждой записи много признаков (чаще всего добавляют полиномы, разницу с предыдущим значением и значением за прошлый год, one-hot-encoding для категориальных признаков и т.п.). Вот только совсем нелегко разобраться, какие из них действительно полезны, а какие только усложняют модель и увеличивают ошибки вашего прозноза.

Для этого вы можете воспользоваться методами байесовой статистики, например, Automatic Relevance Determination. Читать полностью »

imageВ этой статье, переведенной командой процессинговой компании PayOnline, подробно описаны примеры интеграции инструментов голосового управления онлайн-покупками крупнейшими технологическими корпорациями США.

Google, Apple и Amazon сделали крупную ставку на голосовое управление как на движущую силу электронной коммерции будущего. Каждая из этих компаний уже выложила немало денег и приготовила крутые новые технологии для этого направления. Но эксперт Карен Уэбстер считает, что в назревающем коммерческом сражении победит не тот, кто больше всего раскошелится или предложит самые крутые девайсы. Победителем из этой схватки, вероятно, выйдет тот, кому удастся понять, как потребители на самом деле ищут нужные товары. По ее словам, все чаще это происходит не с помощью приложений из App Store или Google Play и даже не через строку поиска.
Читать полностью »

Представляем вам перевод серии статей посвященных глубокому обучению. В первой части описан выбор фреймворка с отрытым кодом для символьного глубокого обучения, между MXNET, TensorFlow, Theano. Автор подробно сравнивает преимущества и недостатки каждого из них. В следующих частях вы узнаете о тонкой настройке глубоких сверточных сетей, а также о сочетании глубокой сверточной нейронной сети с рекуррентной нейронной сетью.

Deep Learning: Сравнение фреймворков для символьного глубокого обучения - 1
Читать полностью »

Нужно построить больше GPU
GPU в облаках - 1

Deep Learning – одно из наиболее интенсивно развивающихся направлений в области машинного обучения.

Успехи исследований в области глубокого (глубинного) обучения вызывают за собой рост количества ML/DL-фреймворков (в т.ч. и от Google, Microsoft, Facebook), имплементирующих данные алгоритмы. За все возрастающей вычислительной сложностью DL-алгоритмов, и, как следствие, за увеличивающейся сложностью DL-фреймворков уже давно не угоняются аппаратные мощности ни настольных, ни даже серверных CPUs.

Выход нашли, и он простой (кажется таким) – использовать для такого типа compute-intensive-задач расчеты на GPU/FPGA. Но и тут проблема: можно, конечно, для этих целей использовать видеокарту любимого ноутбука, но какой русский data scientist не любит быстрой езды NVidia Tesla?

Подходов к владению высокопроизводительными GPU минимум два: купить (on-premises) и арендовать (on-demand). Как накопить и купить – тема не этой статьи. В этой — мы рассмотрим, какие предложения есть по аренде инстансов VM c высокопроизводительными GPU у облачных провайдеров Amazon Web Service и Windows Azure.

Читать полностью »

Эта статья посвящена кластеризации, а точнее, моему недавно добавленному в CRAN пакету ClusterR. Детали и примеры ниже в большинстве своем основаны на пакете Vignette.

Кластерный анализ или кластеризация — задача группирования набора объектов таким образом, чтобы объекты внутри одной группы (называемой кластером) были более похожи (в том или ином смысле) друг на друга, чем на объекты в других группах (кластерах). Это одна из главных задач исследовательского анализа данных и стандартная техника статистического анализа, применяемая в разных сферах, в т.ч. машинном обучении, распознавании образов, анализе изображений, поиске информации, биоинформатике, сжатии данных, компьютерной графике.

Наиболее известные примеры алгоритмов кластеризации — кластеризация на основе связности (иерархическая кластеризация), кластеризация на основе центров (метод k-средних, метод k-медоидов), кластеризация на основе распределений (GMM — Gaussian mixture models — Гауссова смесь распределений) и кластеризация на основе плотности (DBSCAN — Density-based spatial clustering of applications with noise — пространственная кластеризация приложений с шумом на основе плотности, OPTICS — Ordering points to identify the clustering structure — упорядочивание точек для определения структуры кластеризации, и др.).

В первой части: гауссова смесь распределений (GMM), метод k-средних, метод k-средних в мини-группах.
Читать полностью »

Можем ли мы вскрыть чёрный ящик искусственного интеллекта? - 1

Дин Помело [Dean Pomerleau] всё ещё помнит, как ему впервые пришлось столкнуться с проблемой «чёрного ящика». В 1991 году он делал одну из первых попыток в той области, которая сейчас изучается всеми, кто пытается создать робомобиль: обучение компьютера вождению.

А это означало, что нужно сесть за руль специально подготовленного Хамви (армейского вседорожника), и покататься по улицам города. Так рассказывает об этом Помело, в ту пору бывший аспирантом по робототехнике в Университете Карнеги-Меллон. Вместе с ним катался и компьютер, запрограммированный следить через камеру, интерпретировать происходящее на дороге и запоминать все движения водителя. Помело надеялся, что машина в итоге построит достаточно ассоциаций для самостоятельного вождения.

За каждую поездку Помело тренировал систему несколько минут, а затем давал ей порулить самостоятельно. Всё вроде бы шло хорошо – пока однажды Хамви, подъехав к мосту, не повернул внезапно в сторону. Человеку удалось избежать аварии, только быстро схватив руль и вернув управление.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js