Рубрика «машинное обучение» - 223

Приглашаем на Moscow Data Science Meetup 25 ноября - 1

25 ноября в московском офисе Mail.Ru Group пройдет традиционная встреча сообщества Moscow Data Science. Участники поделятся профессиональным опытом решения практических задач анализа данных и пообщаются в неформальной обстановке. Встреча будет посвящена глубокому обучению. Присоединяйтесь!
Читать полностью »

Речь, как ни странно, пойдёт о использующем свёрточную сеть классификаторе текстов (векторизация отдельных слов — это уже другой вопрос). Код, тестовые данные и примеры их применения — на bitbucket (уперся в ограничения размера от github и предложение применить Git Large File Storage (LFS), пока не осилил предлагаемое решение).

Наборы данных

Использованы конвертированные наборы: http://www.daviddlewis.com/resources/testcollections/reuters21578/ (22000 записей), https://github.com/watson-developer-cloud/car-dashboard/blob/master/training/car_workspace.json (530 записей), https://github.com/watson-developer-cloud/natural-language-classifier-nodejs/blob/master/training/weather_data_train.csv (50 записей). Кстати, не отказался бы от подкинутого в комменты/ЛС (но лучше таки в комменты) набора текстов на русском.

Устройство сети

За основу взята одна реализация описанной тут сети: https://arxiv.org/abs/1408.5882. Код использованной реализации на https://github.com/alexander-rakhlin/CNN-for-Sentence-Classification-in-Keras.
В моём случае — на входе сети находятся векторы слов (использована gensim-я реализация word2vec). Структура сети изображена ниже:
Реализация классификации текста свёрточной сетью на keras - 1
Вкратце:

  • Текст представляется как матрица вида word_count x word_vector_size. Векторы отдельных слов — от word2vec, о котором можно почитать, например, в этом посте. Так как заранее мне неизвестно, какой текст подсунет пользователь — беру длину 2 * N, где N — число векторов в длиннейшем тексте обучающей выборки. Да, ткнул пальцев в небо.
  • Матрица обрабатывается свёрточными участками сети (на выходе получаем преобразованные признаки слова)
  • Выделенные признаки обрабатываются полносвязным участком сети

Стоп слова отфильтровываю предварительно (на reuter-м dataset-е это не сказывалось, но в меньших по объему наборах — оказало влияние). Об этом ниже.

Читать полностью »

В предыдущей статье из цикла «Deep Learning» вы узнали о сравнении фреймворков для символьного глубокого обучения. В этом материале речь пойдет о глубокой настройке сверточных нейронных сетей для повышения средней точности и эффективности классификации медицинских изображений.

Deep Learning: Transfer learning и тонкая настройка глубоких сверточных нейронных сетей - 1
Читать полностью »

image

В данной статье я хотел бы рассмотреть на практике вариант построения простейшей рекомендательной системы основанной на схожести изображений товаров. Этот материал предназначен для тех, кто хотел бы попробовать применить Deep Learning, а именно свёрточные нейронные сети, в простом, интересном и практически применимом проекте, но не знает с чего начать.
Читать полностью »

Исследователи из MIT научили нейронные сети аргументировать свои решения - 1

В последнее время нейросети показывали себя прекрасно во многих прикладных задачах. Они искали закономерности в данных, которые использовались для классификации и прогнозирования. Нейросети с кажущейся легкостью распознавали объекты в цифровых изображениях или, «прочитав» отрывок текста, резюмировали его тему. Однако никто не мог рассказать, какие преобразования проходили вводимые данные для получения того или иного решения. Даже авторы сетей владели данными на входе и информацией на выходе. И если рассматривать визуальные данные, то иногда даже можно автоматизировать опыты по выяснению, на какие составляющие изображений реагирует нейросеть. А с системами обработки текста процесс более сложный. В чем сложность понимания человеческого языка машиной вы можете прочитать ниже.

В лаборатории CSAIL (лаборатории информатики и искусственного интеллекта) Массачусетского технологического института исследователи нейросетей сделали так, что теперь «виртуальный мозг» в дополнение к решению выдает и его обоснование. Они обучали два модуля одной нейросети одновременно. Данными для обучения были текстовые отрывки. Результаты порадовали: компьютер думал, как и человек, в 95% случаев. И все же, прежде, чем запустить новый метод нейросетей в активное пользование, потребуется дополнительная настройка и доработка.

Почему картинки обрабатывать легче, чем текст? Можно ли будет беспилотным автомобилям ездить свободно, позволительно ли заменять живого доктора запрограммированным интеллектом, внутри которого бессчетное количество нейронов? Приближает ли это нас к сознательным машинам в реальной жизни? Компьютерные модели нейронных сетей ведут себя так же, как и человеческий мозг, но им пока не разрешали принимать решения, затрагивающие жизни людей. Чтобы изменить это, специалистам понадобилось время и теперь мы можем узнать, как нейросеть приходит к итоговым значениям.
Читать полностью »

Представляем первую статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).

Глубокое обучение для новичков: распознаем рукописные цифры - 1
Читать полностью »

Сегодня мы анонсировали новый поисковый алгоритм «Палех». Он включает в себя все те улучшения, над которыми мы работали последнее время.

Например, поиск теперь впервые использует нейронные сети для того, чтобы находить документы не по словам, которые используются в запросе и в самом документе, а по смыслу запроса и заголовка.

Искусственный интеллект в поиске. Как Яндекс научился применять нейронные сети, чтобы искать по смыслу, а не по словам - 1

Уже много десятилетий исследователи бьются над проблемой семантического поиска, в котором документы ранжируются, исходя из смыслового соответствия запросу. И теперь это становится реальностью.

В этом посте я постараюсь немного рассказать о том, как у нас это получилось и почему это не просто ещё один алгоритм машинного обучения, а важный шаг в будущее.
Читать полностью »

Китайский робот-охранник с электрошокером AnBot заступил в патруль - 1

В Шэньчжэне начал работу первый патрульный робот для работы с гражданским населением, у которого есть вооружение. AnBot похож на своих сородичей как и формой ездящего яйца, так и основной функцией — аудиовизуально искать нарушения и сообщать об этом человеку. У AnBot есть небольшое отличие: он может не просто сообщать об угрозе, но и разгонять толпу электрошокером.

Впервые робота показали в апреле этого года. Разработка Университета национальной обороны Народно-освободительной армии Китая напоминает Далека из «Доктора Кто»: весит 78 килограммов, имеет рост в полтора метра и диаметр в 80 сантиметров. При внешней неповоротливости разработчики обещают максимальную скорость в 18 километров в час — сравнимо со средней скоростью бега. Впрочем, патрульная скорость робота — 1 км/ч, о возможности езды по препятствиям ничего не сообщается. AnBot работает до 8 часов на одном заряде.
Читать полностью »

Статистика для математика - 1

В современных условиях интерес к анализу данных постоянно и интенсивно растет в совершенно различных областях, таких как биология, лингвистика, экономика, и, разумеется, IT. Основу этого анализа составляют статистические методы, и разбираться в них необходимо каждому уважающему себя специалисту в data mining.

К сожалению, действительно хорошая литература, такая что умела бы предоставить одновременно математически строгие доказательства и понятные интуитивные объяснения, встречается не очень часто. И данные лекции, на мой взгляд, необычайно хороши для математиков, разбирающихся в теории вероятностей именно по этой причине. По ним преподают магистрам в немецком университете имени Кристиана-Альбрехта на программах «Математика» и «Финансовая математика». И для тех, кому интересно, как этот предмет преподается за рубежом, я эти лекции перевел. На перевод у меня ушло несколько месяцев, я разбавил лекции иллюстрациями, упражнениями и сносками на некоторые теоремы. Замечу, что я не профессиональный переводчик, а просто альтруист и любитель в этой сфере, так что приму любую критику, если она конструктивна.

Вкратце, лекции вот о чем:
Читать полностью »

[ В закладки ] Зоопарк архитектур нейронных сетей. Часть 2 - 1

Публикуем вторую часть статьи о типах архитектуры нейронных сетей. Вот первая.

За всеми архитектурами нейронных сетей, которые то и дело возникают последнее время, уследить непросто. Даже понимание всех аббревиатур, которыми бросаются профессионалы, поначалу может показаться невыполнимой задачей.

Поэтому я решил составить шпаргалку по таким архитектурам. Большинство из них — нейронные сети, но некоторые — звери иной породы. Хотя все эти архитектуры подаются как новейшие и уникальные, когда я изобразил их структуру, внутренние связи стали намного понятнее.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js