Рубрика «машинное обучение» - 222

image

Содержание

  1. Введение в Computer Science
  2. Структуры данных и Алгоритмы
  3. Системное программирование
  4. Распределенные системы
  5. Базы данных
  6. Объектно-ориентированный дизайн и разработка софта
  7. Искусственный интеллект
  8. Машинное обучение
  9. Веб-разработка и интернет-технологии
  10. Concurrency
  11. Компьютерные сети
  12. Разработка мобильных приложений
  13. Математика для программистов
  14. Теория информатики и языки программирования
  15. Архитектура компьютера
  16. Безопасность
  17. Компьютерная графика
  18. Работа с изображениями и компьютерное зрение
  19. Интерфейс Человек-Компьютер
  20. Вычислительная биология
  21. Прочее

Поддержка публикации — компания Edison, которая тестирует критические системы на отказоустойчивость, а так же проектирует и разрабатывает ПО для кластерных вычислений.
Читать полностью »

Попробуем решить задачу поиска аномалий в звуке.

Примеры аномалий звука:

  • Неисправности в работе двигателя.
  • Изменения в погоде: дождь, град, ветер.
  • Аномалии работа сердца, желудка, суставов.
  • Необычный трафик на дороге.
  • Неисправности колесных пар у поезда.
  • Неисправности при посадке и взлете самолета.
  • Аномалии движения жидкости в трубе, в канале.
  • Аномалии движения воздуха в системах кондиционирования, на крыле самолета.
  • Неисправности автомобиля, велосипеда.
  • Неисправности станка, оборудования.
  • Расстроенный музыкальный инструмент.
  • Неправильно взятые ноты песни.
  • Эхолокация кораблей и подводных лодок.
    Читать полностью »

Оптимизм по поводу нейронных сетей разделяют не все — или, по крайней мере, уровень такого оптимизма бывает разным. Старший преподаватель факультета компьютерных наук ВШЭ Сергей Бартунов согласен, что нейросетевая область сейчас на подъеме. С другой стороны, он хочет внести в происходящее некоторую ясность, определить реальный потенциал нейросетей. Вне зависимости от точки зрения докладчика, глубокое обучение и правда не проникает в нашу сферу совсем уж стремительными темпами. Традиционные методы обучения всё ещё работают и не обязательно будут вытеснены машинным интеллектом в ближайшей будущем.

Под катом — расшифровка лекции и часть слайдов Сергея.

Читать полностью »

Из уважения к тем из вас, кто на дух не переносит здесь рекламу, сразу сообщим — да, это рекламный пост. Можно проскроллить дальше. Тем, кто считает, что реклама не всегда вредна и порой помогает принимать нам важные решения, добро пожаловать под кат.
Читать полностью »

Современные программы, претендующие на звание эффективных, должны учитывать особенности аппаратного обеспечения, на котором они будут исполняться. В частности, речь идёт о многоядерных процессорах, например, таких, как Intel Xeon и Intel Xeon Phi, о больших размерах кэш-памяти, о наборах инструкций, скажем, Intel AVX2 и Intel AVX-512, позволяющих повысить производительность вычислений.

Оптимизация нейросетевой платформы Caffe для архитектуры Intel - 1
Еле удержались, чтобы не пошутить про руссиано)

Вот, например, Caffe – популярная платформа для разработки нейронных сетей глубокого обучения. Её создали в Berkley Vision and Learning Center (BVLC), она пришлась по душе сообществу независимых разработчиков, которые вносят посильный вклад в её развитие. Платформа живёт и развивается, доказательство тому – статистика на странице проекта в GitHub. Caffe называют «быстрой открытой платформой для глубокого обучения». Можно ли ускорить такой вот «быстрый» набор инструментов? Задавшись этим вопросом, мы решили оптимизировать Caffe для архитектуры Intel.
Читать полностью »

Добрый день, коллеги. Сегодня хочется трезво посмотреть глазами инженера на так популярные сейчас искусственный интеллект и Deep learning, упорядочить, выстроить факты и выработать выигрышную стратегию – как с этим … взлететь, пролететь и не упасть кому-нибудь на голову? Потому-что, когда дело от лабораторных моделей на python/matplotlib/numpy или lua доходит до высоконагруженного production в клиентском сервисе, когда ошибка в исходных данных сводит на нет все усилия – становится не то, что весело, а даже начинается нумерологический средневековый экстаз и инженеры начинают сутки напролет танцевать, в надежде излечиться от новомодной чумы )

Искусственный интеллект, вызовы и риски – глазами инженера - 1
Танцующие инженеры, тщетно надеющиеся исцелиться
Читать полностью »

Ю. Шмидхубер: «Прекрасно быть частью будущего искусственного интеллекта» - 1

В последние дни сентября в Амстердаме проходила конференция по графическим технологиям GTC EUROPE 2016. Профессор Юрген Шмибдхубер представлял свою презентацию, как научный директор IDSIA, швейцарской лаборатории, где он с коллегами занимается исследованиями в области искусственного интеллекта.

Главный тезис выступления — настоящий искусственный интеллект изменит все уже в скором времени. По большей части статья, которую вы сейчас читаете, подготовлена по материалам презентации профессора Шмидхубера.
Читать полностью »

Иногда проводишь день в попытках без использования терминов «рекурсивный вызов» и «идиоты» объяснить главному бухгалтеру, почему на самом деле простое изменение учетной системы затягивается почти на неделю из-за орфографической ошибки, допущенной кем-то в коде в 2009 году. В такие дни хочется пооборвать руки тому умнику, который сотворил этот мир, и переписать все с ноля.

image

TL;DR
Под катом история о том, как я в качестве практики для изучения Python разрабатываю свою библиотеку для агентного моделирования с машинным обучением и богами.

Ссылка на github. Для работы из коробки нужен pygame. Для ознакомительного примера понадобится sklearn.
Читать полностью »

В последнее время все технологические компании твердят о машинном обучении. Мол, столько задач оно решает, которые раньше только люди и могли решить. Но как конкретно оно работает, никто не рассказывает. А кто-то даже для красного словца машинное обучение называет искусственным интеллектом.

Простыми словами: как работает машинное обучение - 1

Как обычно, никакой магии тут нет, все одни технологии. А раз технологии, то несложно все это объяснить человеческим языком, чем мы сейчас и займемся. Задачу мы будем решать самую настоящую. И алгоритм будем описывать настоящий, подпадающий под определение машинного обучения. Сложность этого алгоритма игрушечная — а вот выводы он позволяет сделать самые настоящие.
Читать полностью »

Введение

Представляем вторую статью в серии, задуманной, чтобы помочь быстро разобраться в технологии глубокого обучения; мы будем двигаться от базовых принципов к нетривиальным особенностям с целью получить достойную производительность на двух наборах данных: MNIST (классификация рукописных цифр) и CIFAR-10 (классификация небольших изображений по десяти классам: самолет, автомобиль, птица, кошка, олень, собака, лягушка, лошадь, корабль и грузовик).
Глубокое обучение для новичков: распознаем изображения с помощью сверточных сетей - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js