Рубрика «машинное обучение» - 221

Т.к. мой классификатор из прошлого поста таки работает (впрочем, параметры «из коробки» не всегда удачны, потому я вынес возможность слегка настроить Conv1d-слои и скрытый слой) — я решил прикрутить его к боту. Да, запоздал я на этот хайп :-). Кстати, заранее уточню, что прикрутить русский я пока таки не пробовал, хотя это не должно стать проблемой — в nltk поддерживаются нужные фичи, обучение word2vec концептуально не отличается от английского, да и предобученные модели вроде бы имеются.

Ну и сходу возникают вопросы:

  • под какие платформы его пилить — пока решил остановиться на telegram. В теории — конструкция позволяет легко дописать обертки для других платформ (как будто он кому-то понадобится :-) )
  • как описывать «сценарий». Навелосипедил свою структуру с классами и сущностями поверх YAML
  • ну и неплохо бы хранить ботов/состояние в какой-нибудь БД

Читать полностью »

Логотип Привет всем любителям и исследователям искусственного интеллекта! В данной статье я хотел бы рассказать об интересном проекте: модульной системе универсального искусственного интеллекта (МСУИИ) «Amiga Virtual» (AV, «Виртуальная Подружка»). Я расскажу об основных принципах её работы и опишу некоторые детали реализации, а самые любопытные смогут исследовать все исходные коды. Разработка ведётся на Delphi, но модули теоретически могут быть написаны на любом ЯП. Данная система будет интересна как конечным пользователям чат-ботов и связанных с ними систем, так и разработчикам ИИ — ведь на её основе можно разработать практически любой тип ИИ.
Читать полностью »

Применение машинного обучения может включать работу с данными, тонкую настройку уже обученного алгоритма и т. д. Но масштабная математическая подготовка нужна и на более раннем этапе: когда вы только выбираете модель для дальнейшего использования. Можно выбирать «вручную», применяя разные модели, а можно и этот процесс попробовать автоматизировать.

Под катом — лекция ведущего научного сотрудника РАН, доктора наук и главного редактора журнала «Машинное обучение и анализ данных» Вадима Стрижова, а также большинство слайдов.

Читать полностью »

Как создать торгового робота с помощью генетического программирования - 1

Доброго времени суток. В этой статье расскажу о создании системы в которой генетические алгоритмы пишут роботов. В теории эти роботы могли бы торговать на бирже.

Я фанат трех вещей — искусственного интеллекта, высокопроизводительных машин и практического применения любых знаний. Имея некоторое свободное время, я спроектировал небольшую задачку, приобрел железо и сел творить.

Проект возник из желания попробовать на практике генетическое программирование. Первым вариантом было создавать бота к какой-нибудь игре, но я остановился на торговых роботах, где биржа тоже своего рода игра.
Читать полностью »

Представляем вам завершающую статью из цикла по Deep Learning, в которой отражены итоги работы по обучению ГСНС для изображений из определенных областей на примере распознавания и тегирования элементов одежды. Предыдущие части вы найдете под катом.

Deep Learning: Cочетание глубокой сверточной нейронной сети с рекуррентной нейронной сетью - 1
Читать полностью »

FlyElephant празднует первый год работы в публичном доступе и анонсирует сотрудничество с HPC-HUB - 1

В ноябре FlyElephant празднует первый год работы в публичном доступе. FlyElephant — это платформа для дата сайнтистов, инженеров и ученых, которая ускоряет бизнес с помощью автоматизации Data Science и Engineering Simulation.
Читать полностью »

На эксклюзивных условиях представляем для вас полный вариант статьи из журнала Хакер, посвященной разработке на R. Под катом вы узнаете, как выжать максимум скорости при работе с табличными данными в языке R.

data.table: выжимаем максимум скорости при работе с данными в языке R - 1Читать полностью »

Пусть Жираф был не прав,
Но виновен не Жираф,
А тот, кто крикнул из ветвей:
«Жираф большой — ему видней!» (с)

Потребовалось оперативно разобраться с технологией Apache Spark заточенную для использования Big Data. В процессе выяснения активно использовал habrahabr, так что попробую вернуть информационный должок, поделившись приобретенным опытом.

А именно: установкой системы с нуля, настройкой и собственно программированием кода решающего задачу обработки данных для создания модели, вычисляющей вероятность банкротства клиента банка по набору таких признаков как сумма кредита, ставка и т.д.

Больших данных вроде как должно быть много, но почему-то не просто найти то злачное место, где их все щупают. Сначала попробовал вариант с ambari, но на моей Window7 валились ошибки настроек сетевого моста. В итоге прокатил вариант с преднастроенной виртуальной машиной от Cloudera (CDH). Просто устанавливаем VirtualBox, запускаем скачанный файл, указываем основные параметры (память, место) и через 5 минут достопочтенный джин Apache Hadoop жаждет ваших указаний.

Несколько слов, почему именно Spark. Насколько я понимаю, ключевые отличия от изначальной MapReduce в том, что данные удерживаются в памяти, вместо сброса на диск, что дает ускорение во много раз. Но, пожалуй, более важны реализации целого ряда статистических функций и удобным интерфейсом для загрузки/обработки данных.

Дальше собственно код для решения следующей задачи. Есть реально большие данные (ибо рука очень устает скролить эти 2000 строк) в формате:

Маленький код для больших данных или Apache Spark за 3 дня - 1

Есть предположение, что дефолт как-то связан с остальными параметрами (кроме первого, к уважаемым Ивановым1…N претензий нет) и нужно построить модель линейной регрессии. Прежде чем начать, стоит оговориться, что это мой первый код на Java, сам я работаю аналитиком и вообще это мой первый запуск Eclipse, настройка Maven и т.д. Так что не стоит ждать изысканных чудес, ниже решение задачи в лоб тем способом, который почему-то заработал. Поехали:
Читать полностью »

Целью статьи является попытка сравнительного анализа основных подходов в решении задач семантического анализа текстов, их различиях и эффективности на уровне концепций, без учета нюансов, комбинаций вариантов и возможных трюков, способствующих улучшению ожидаемого результата.

На сегодняшний день существует огромное количество материалов описывающий те или иные техники решения задач семантического анализа текстов. Это и латентно-семантический анализ, SVM-анализ, «перенос-свертка» и многое другое. Писать очередную статью про обзор и сравнение конкретных алгоритмов – это значит впустую потрать время.

Мне бы хотелось в рамках нескольких статей обсудить базовые идеи и проблемы, лежащие в основе семантического анализа с точки зрения их практического применения, если можно так выразится, с базовой философско-онтологической точки зрения. В какой степени возможно использовать порождающие грамматики для анализа текста? Накапливать ли варианты написания и разного рода "корпуса" или разрабатывать алгоритмы анализа на основании правил?

В рамках нашего рассуждения я осознанно постараюсь уйти от каких-либо терминов и устоявшихся выражений, ибо как говорил У. Куайн – термины это всего лишь имена в рамках онтологий не имеющие никакого практического значения для решения задач логики и понимания чего-либо в частности.[1] Поэтому, с его позволения, будем опираться на единичные дескрипции Рассела, а проще говоря, давать полные описания в ущерб существующим устоявшимся терминам.

Читать полностью »

Во вторник, 29 ноября 2016 года DI Telegraph и Data-Centric Alliance проведут митап Art of Science.

Встреча любителей больших данных и искусства - 1

Art of Science – мероприятие, посвященное анализу данных в искусстве. Наука и искусство – что их связывает? Возможно ли взаимодействие этих двух разных миров? Можно ли с помощью big data, нейронных сетей и методов машинного обучения создавать что-то полезное и прекрасное? Как наука о данных может помочь в решении задач современного искусства? Об этом и многом другом расскажут наши спикеры, представители мира технологического «искусства».
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js