Рубрика «машинное обучение» - 212

Старт открытого курса OpenDataScience

Привет всем, кто ждал запуска открытого курса по практическому анализу данных и машинному обучению!

Открытый курс машинного обучения. Тема 1. Первичный анализ данных с Pandas - 1

Первая статья посвящена первичному анализу данных с Pandas.

Пока в серии планируется 7 статей, идущих вместе с тетрадками Jupyter (репозиторий mlcourse_open), соревнованиями и домашними заданиями.

Далее идет список будущих статей, описание курса и собственно, первая тема – введение в Pandas.

Читать полностью »

Здравствуйте, дорогие читатели. Сегодня мы публикуем внеочередной перевод — это будет обзорная статья блистательного Ноэля Уэлша о принципах вероятностного программирования. Статья публикуется по заявкам читателей, которые задают нашему блогу все более высокую планку — и это, безусловно, здорово!
Читать полностью »

Была ночь, огни Бориспольской трассы пролетали мимо окон такси. Водитель выключил музыку, невыносимо давившую мне на мозг после тяжелого перелета, и, чтобы не заснуть, начал говорить.

Сначала, конечно, о политике, «довели страну», и все в таком роде, потом о чем-то личном. Я тоже не хотел отключаться прямо на переднем сидении, поэтому пытался его слушать.

—… И тогда нам всем придет конец, — донеслись до меня обрывки фразы. — Точнее только им, не мне. Я надежно подстраховался. Когда их всех: водителей такси, маршруток, даже трамваев выкинут на улицу, меня уже там не будет. Я буду сидеть в тепле, пить кофе и громко-громко смеяться.

— Почему-почему их выкинут на улицу? — заспанно переспросил я.

— Ты что, про Убер не слышал? Что они с водителями делают — только репетиция, да. Скоро, уже очень скоро они запустят свои автопилоты. Это будет дешевле, безопаснее, круче! Всех этих бездарностей ждет работа на стройке. Или бомжатник. Но не меня, я умнее их.

— Да? — протер я глаза.

Читать полностью »

Добрый день! Это второй дайджест материалов по машинному обучению и анализу данных. Несмотря на праздники на этой неделе было много интересного.

image

Читать полностью »

Всё началось с того, что жена захотела повесить кормушку для птиц. Идея мне понравилась, но сразу захотелось оптимизировать. Световой день зимой короткий — сидеть днём и смотреть на кормушку времени нет. Значит нужно больше Computer Vision!
Умная кормушка: Machine Learning, Raspberry Pi, Telegram, немножко магии обучения + инструкция по сборке - 1
Идея была простой: прилетает птичка — вжуууух — она оказывается на телефоне. Осталось придумать как это сделать и реализовать.
В статье:

  • Запуск Caffe на Raspberry Pi B+ (давно хотел это сделать)
  • Построение системы сбора данных
  • Выбор нейронной сети, оптимизация архитектуры, обучение
  • Оборачивание, выбор и приделывание интерфейса

Все исходники открыты + описан полный порядок развёртывания получившейся конструкции.
Читать полностью »

Есть одна очень интересная новость, которая осталась мало освещенной, особенно в руском сегменте Интернета. Perspective API от Google теперь доступен для разработчиков. Что это ещё за очередная хрень спросите вы? Если коротко, то это API или сервис, который позволяет оценить «токсичность» комментариев в сети. Да, это не шутка, всё именно так. Вы даже можете зайти на и проверить свой комментарий на эту самую «токсичность». Среди партнеров проекта такие новостные агентства как The New York Times, The Guardian, The Economist и интернет энциклопедия Wikipedia.
Читать полностью »

Искусственный интеллект, машинное обучение и глубокое обучение уже сейчас являются неотъемлемой частью многих предприятий. Часто эти термины используются как синонимы.

Искусственный интеллект движется огромными шагами — от достижений в области беспилотных транспортных средств и способности обыгрывать человека в такие игры, как покер и Го, к автоматизированному обслуживанию клиентов. Искусственный интеллект — это передовая технология, которая готова произвести революцию в бизнесе.

Часто термины искусственный интеллект, машинное обучение и глубокое обучение используются бессистемно как взаимозаменяемые, но, на самом деле, между ними есть различия. Чем именно различаются эти термины будет рассказано далее.
Читать полностью »

Нейросеть DeepCoder учится программировать, заимствуя код у других программ - 1
Условная матрица неточностей для нейросети и тестового набора из 500 программ длиной в 3 строчки. Каждая ячейка содержит среднюю вероятность ложно-положительного результата (крупным шрифтом) и количество тестовых программ, из которых это значение выведено (меньшим шрифтом, в скобках). Насыщенность цвета коррелирует с вероятностью ложно-положительного результата

У программистов скоро появится хороший помощник: умная нейросеть, которая способна выполнять рутинные задачи. Более того, с помощью такой нейросети люди могут создавать программы, даже не зная синтаксиса конкретного языка и фактически не умея программировать. Нужно составить алгоритм и поставить задачи — а нейросеть напишет код для их решения.
Читать полностью »

Наконец идея дорисовать сову из кружочков реализована с помощью нейросетей.

image

Читать полностью »

Многие материалы по нейронным сетям сразу начинаются с демонстрации довольно сложных архитектур. При этом самые базовые вещи, касающиеся функций активаций, инициализации весов, выбора количества слоёв в сети и т.д. если и рассматриваются, то вскользь. Получается начинающему практику нейронных сетей приходится брать типовые конфигурации и работать с ними фактически вслепую.

В статье мы пойдём по другому пути. Начнём с самой простой конфигурации — одного нейрона с одним входом и одним выходом, без активации. Далее будем маленькими итерациями усложнять конфигурацию сети и попробуем выжать из каждой из них разумный максимум. Это позволит подёргать сети за ниточки и наработать практическую интуицию в построении архитектур нейросетей, которая на практике оказывается очень ценным активом.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js