Привет всем, кто проходит курс машинного обучения на Хабре!
В первых двух частях (1, 2) мы попрактиковались в первичном анализе данных с Pandas и в построении картинок, позволяющих делать выводы по данным. Сегодня наконец перейдем к машинному обучению. Поговорим о задачах машинного обучения и рассмотрим 2 простых подхода – деревья решений и метод ближайших соседей. Также обсудим, как с помощью кросс-валидации выбирать модель для конкретных данных.
Напомним, что к курсу еще можно подключиться, дедлайн по 2 домашнему заданию – 13 марта 23:59.