Недавно завершился контест по машинному обучению ML Boot Camp III от Mail.Ru.
Будучи новичком в machine learning мне удалось занять 3-е место. И в этой статье я постараюсь поделиться своим опытом участия.
Недавно завершился контест по машинному обучению ML Boot Camp III от Mail.Ru.
Будучи новичком в machine learning мне удалось занять 3-е место. И в этой статье я постараюсь поделиться своим опытом участия.
Впечатляющие результаты ряда исследований, проведённые в последние годы, привлекли внимание мирового сообщества к теме машинного обучения. Со времён «зимы искусственного интеллекта» мы ещё никогда не были так воодушевлены возможностями этой технологии. Но несмотря на всплеск интереса, ряд ученых считают, что многие из нас уделяют слишком много внимания не тем исследованиям. За всей этой шумихой практически незаметной осталась небольшая группа исследователей, которые втихую закладывают фундамент для дальнейшего использования машинного обучения, которое позволит решить многие проблемы человечества.Читать полностью »
На прошлой неделе прошла встреча кейс-клуба Data Science, на которой специалисты Avito рассказали о том, какие бизнес-задачи сервиса решаются с помощью машинного обучения. В частности поговорили про рекомендации, контекстную рекламу и модерацию. Под катом больше подробностей о встрече и видеозаписи докладов.
Этой весной наша проектная школа в очередной раз состоится в новом месте. На это раз, мы едем в Иннополис – изучать новый город и университет, о котором пока только наслышаны. До школы мы планируем умудриться провести методический интенсив для преподавателей на основе проекта по интернету вещей и митап по информационной безопасности.
#ужевыехали
Читать полностью »
Перевод поста Стивена Вольфрама (Stephen Wolfram) "The R&D Pipeline Continues: Launching Version 11.1".
Выражаю огромную благодарность Полине Сологуб за помощь в переводе и подготовке публикации
— Небольшой релиз — тоже неплохо
— Визуальные изменения
— Множество новых функций
— Нейросети
— Машинное обучение
— Аудио
— Изображения и визуализация
— Больше данных
— Интегрированные внешние сервисы
— Больше математики, больше алгоритмов
— Детализация дат
— Настройка языка
— Язык хранения
— Программирование на низком уровне
— Укрепление инфраструктуры
— И еще кое-что
Я рад сообщить о том, что сегодня вышла версия 11.1 языка Wolfram Language (и системы Wolfram Mathematica). На данный момент, версия 11.1 уже работает в Wolfram Cloud, а Desktop-версии уже доступны для загрузки для Mac, Windows и Linux.
Что нового в версии 11.1? На самом деле много чего. Если кратко:
В ней очень много нового. Можно подумать, что релиз .1 спустя почти 29 лет после выхода версии 1.0 вряд ли удивит. Однако в случае с нашей компанией дела обстоят иначе. С тех пор, как мы построили весь стек доступных сейчас технологий, мы лишь ускоряемся в своем развитии. И теперь даже в версии 11.1 представлено множество новых функциональных возможностей.
Читать полностью »
Всем привет!
Сегодня мы детально обсудим очень важный класс моделей машинного обучения – линейных.
Ключевое отличие нашей подачи материала от аналогичного в курсах эконометрики и статистики – это акцент на практическом применении линейных моделей в реальных задачах (хотя и математики тоже будет немало).
Пример двух таких задач – это соревнования Kaggle Inclass по прогнозированию популярности статьи на Хабре и по идентификации взломщика в Интернете по его последовательности переходов по сайтам. Домашним заданием №4 будет применение линейных моделей в этих задачах.
А пока еще можно сделать простое 3 задание – до 23:59 20 марта.
Все материалы доступны на GitHub.
Сегодня предлагаю поразмышлять о том, как искать паттерны в биржевых данных и как их использовать для успешной торговли.
Будем получать биржевые данные Forex от одного из брокеров, сохраним в базу данных PostgreSQL и попробуем найти закономерности при помощи алгоритмов машинного обучения.
В статье есть несколько приятных бонусов в виде кода на Python — Вы сможете сами проанализировать любые (почти) биржевые данные (или значения индикаторов), запустить собственного торгового робота и проверить любую торговую стратегию.
Все условия и определения паттернов в статье приведены для примера, вы можете использовать любые критерии.
Читать полностью »
Привет!
Параллельно с публикациями статей открытого курса по машинному обучению мы решили запустить ещё одну серию — о работе с популярными фреймворками для нейронных сетей и глубокого обучения.
Я открою этот цикл статьёй о Theano — библиотеке, которая используется для разработки систем машинного обучения как сама по себе, так и в качестве вычислительного бекэнда для более высокоуровневых библиотек, например, Lasagne, Keras или Blocks.
Theano разрабатывается с 2007 года главным образом группой MILA из Университета Монреаля и названа в честь древнегреческой женщины-философа и математика Феано (предположительно изображена на картинке). Основными принципами являются: интеграция с numpy, прозрачное использование различных вычислительных устройств (главным образом GPU), динамическая генерация оптимизированного С-кода.
Цель статьи — познакомить широкую аудиторию с соревнованиями по анализу данных на Kaggle. Я расскажу о своем подходе к участию на примере Outbrain click prediction соревнования, в котором я принимал участие и занял 4ое место из 979 команд, закончив первым из выступающих в одиночку.
Для понимания материала желательны знания о машинном обучении, но не обязательны.
Читать полностью »
В последние годы вездесущие нейронные сети находят все больше и больше применений в различных областях знаний, вытесняя классические алгоритмы, использовавшиеся многие годы. Не стала исключением и область компьютерного зрения, где год за годом все больше и больше задач решаются при помощи современных нейронных сетей. Настало время написать об еще одном павшем бойце в войне "Традиционное зрение vs. Глубокое Обучение". Долгие годы на задаче поиска локальных особенностей изображений (так называемых ключевых точек) безраздельно властвовал алгоритм SIFT(Scale-invariant Feature Transform), предложеный в далеком 1999 году, многие сложили головы в попытках превзойти его, но удалось это лишь Deep Learning'у. Итак, встречайте, новый алгоритм поиска локальных особенностей — LIFT (Learned Invariant Feature Transform).