Рубрика «машинное обучение» - 205

image

19 марта закончился третий чемпионат по машинному обучению на платформе ML Boot Camp. 614 человек прислали решения и поборолись за главный приз ー MacBook Air. Для нас это важный проект: мы хотим расширить сообщество ML-специалистов России. Поэтому в наших задачах сможет разобраться даже новичок. Теоретически… Профи же соревнуются благодаря сложности метрик и большому ряду параметров задачи.

Со второго контеста многое изменилось. Мы увеличили количество участников вдвое, прикрутили к серверу новую метрику, пофиксили баги и создали ML-комьюнити в Телеграме. Рассказываем, как проводили третий контест.

Читать полностью »

До:

Алгоритм Джонкера-Волгенанта + t-SNE=супер-сила - 1

После:

Алгоритм Джонкера-Волгенанта + t-SNE=супер-сила - 2

Заинтригованы? Но обо всем по порядку.

t-SNE

t-SNE — это очень популярный алгоритм, который позволяет снижать размерность ваших данных, чтобы их было проще визуализировать. Этот алгоритм может свернуть сотни измерений к всего двум, сохраняя при этом важные отношения между данными: чем ближе объекты располагаются в исходном пространстве, тем меньше расстояние между этими объектами в пространстве сокращенной размерности. t-SNE неплохо работает на маленьких и средних реальных наборах данных и не требует большого количества настроек гиперпараметров. Другими словами, если взять 100 000 точек и пропустить их через эту волшебный черный ящик, на выходе мы получим красивый график рассеяния.
Читать полностью »

Мы не так часто рассказываем здесь про мероприятия, но про это было сложно промолчать. Если вы фанатеете от космоса и NASA, хотите защитить нашу планету и её жителей, любите работать с данными и совершать новые открытия на их основе, вам точно захочется поучаствовать в International Space Apps Challenge. По катом вы узнаете про 5 основных задач, которые вам предстоит решить.

International Space Apps Challenge: хакатон от NASA - 1
Читать полностью »

Всем привет!

Открытый курс машинного обучения. Тема 8. Обучение на гигабайтах с Vowpal Wabbit - 1

Вот мы постепенно и дошли до продвинутых методов машинного обучения, сегодня обсудим, как вообще подступиться к обучению модели, если данных гигабайты и десятки гигабайт. Обсудим приемы, позволяющие это делать: стохастический градиентный спуск (SGD) и хэширование признаков, посмотрим на примеры применения библиотеки Vowpal Wabbit. Домашнее задание будет как на реализацию SGD-алгоритмов, так и на обучение классификатора вопросов на StackOverflow по выборке в 10 Гб.

Поехали!

Читать полностью »

Обычно модели машинного обучения строят в jupyter-ноутбуках, код которых выглядит, мягко говоря, не очень — длинные простыни из лапши выражений и вызовов "на коленке" написанных функций. Понятно, что такой код почти невозможно поддерживать, поэтому каждый проект переписывается чуть ли не с нуля. А о внедрении этого кода в production даже подумать страшно.

Поэтому сегодня представляем на ваш строгий суд превью библиотеки по работе с датасетами и data science моделями. С ее помощью ваш код может выглядеть так:

my_dataset.
    load('/some/path').
    normalize().
    resize(shape=(256, 256, 256)).
    random_rotate(angle=(-30, 30))
    random_crop(shape=(64, 64, 64))

for i in range(MAX_ITER):
    batch = my_dataset.next_batch(BATCH_SIZE, shuffle=True)
    # обучаем модель, подавая ей батчи с данными    

В этой статье вы узнаете об основных классах и методах, которые помогут сделать ваш код простым, понятным и удобным.

Читать полностью »

Если мы в ближайшие пять лет построим машину с интеллектуальными возможностями одного человека, то ее преемник уже будет разумнее всего человечества вместе взятого. Через одно-два поколения они попросту перестанут обращать на нас внимание. Точно так же, как вы не обращаете внимания на муравьев у себя во дворе. Вы не уничтожаете их, но и не приручаете, они практически никак не влияют на вашу повседневную жизнь, но они там есть.
Сет Шостак

Введение.

Серия моих статей является расширенной версией того, что я хотел увидеть когда только решил познакомиться с нейронными сетями. Он рассчитан в первую очередь на программистов, желающих познакомится с tensorflow и нейронными сетями. Уж не знаю к счастью или к сожалению, но эта тема настолько обширна, что даже мало-мальски информативное описание требует большого объёма текста. Поэтому, я решил разделить повествование на 4 части:

  1. Введение, знакомство с tensorflow и базовыми алгоритмами (эта статья)
  2. Первые нейронные сети
  3. Свёрточные нейронные сети
  4. Рекуррентные нейронные сети

Изложенная ниже первая часть нацелена на то, чтобы объяснить азы работы с tensorflow и попутно рассказать, как машинное обучение работает впринципе, на примере tensorfolw. Во второй части мы наконец начнём проектировать и обучать нейронные сети, в т.ч. многослойные и обратим внимание на некоторые нюансы подготовки обучающих данных и выбора гиперпараметров. Поскольку свёрточные сети сейчас пользуются очень большой популярность, то третья часть выделена для подробного объяснения их работы. Ну, и в заключительной части планируется рассказ о рекуррентных моделях, на мой взгляд, — это самая сложная и интересная тема.
Читать полностью »

Экзоскелет своими руками - 1

Помню, как посмотрев «Аватар», совершенно обалдел от показанных там экзоскелетов. С тех пор, думаю, что за этими умными железками будущее. Еще очень хочется к этой теме свои не той стороной заточенные ручонки приложить. Тем более, что если верить аналитическому агентству ABI Research, объем мирового рынка экзоскелетов к 2025 году составит $1,8 млрд. На данном этапе не будучи технарем, инженером, архитектором и программистом, нахожусь в некотором замешательстве. Думаю, как к этой теме подступиться. Буду рад, если в комментариях к статье отметятся люди, которым потенциально было бы интересно в подобных проектах поучаствовать.Читать полностью »

Как говорить с искусственным интеллектом? - 1

Перевод поста Стивена Вольфрама (Stephen Wolfram) "How Should We Talk to AIs?".
Выражаю огромную благодарность Полине Сологуб за помощь в переводе и подготовке публикации


Содержание

Вычисления — это сила
Язык вычислительного мышления
Понимание ИИ
Что будет делать ИИ?
Постановка целей для ИИ
Разговор одного ИИ с другим
Сбор информации: обзор миллиарда лет
А что, если бы каждый мог писать код?
Действительно ли это будет работать?
Скажу больше


Еще совсем недавно идея иметь компьютер, который может отвечать на вопросы на английском языке, казалась научной фантастикой. Но когда мы в 2009 году выпустили Wolfram|Alpha, одним из самых больших сюрпризов (по крайней мере, для меня!) стало то, что мы сумели сделать наш продукт реально работающим. И теперь люди ежедневно задают личным помощникам несметное количество вопросов — на обычном разговорном языке.

Как говорить с искусственным интеллектом? - 2

Все это достаточно неплохо работает (хотя мы всегда стараемся сделать лучше!). Но как насчет более сложных вещей? Как общаться с искусственным интеллектом?

Я долго думал об этом, пытаясь совместить философию, лингвистику, неврологию, информатику и другие области знания. И я понял, что ответ всегда был перед моим носом, и лежал он в той сфере, которой я занимался последние 30 лет: Wolfram Language.

Может быть, это как раз тот случай, когда у вас есть молоток, и вы видите вокруг одни гвозди. Хотя я уверен, что дело не только в этом. По крайней мере, продумывание этого вопроса — хороший способ понять больше об искусственном интеллекте и его взаимоотношениях с людьми.
Читать полностью »

Идея использовать нейросети для шифрования информации витала в голове у меня давно (с конца 2000х). Но, как это водится, то времени не хватало, то желания. Так что пишу это только сейчас (хотя может материал уже и устарел).
Читать полностью »

Здравствуй!

Библиотека глубокого обучения Tensorflow - 1

Цикл статей по инструментам для обучения нейронных сетей продолжается обзором популярного фреймворка Tensorflow.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js