Рубрика «машинное обучение» - 191

Привет! Продолжаем серию материалов от выпускника нашей программы Deep Learning, Кирилла Данилюка, об использовании сверточных нейронных сетей для распознавания образов — CNN (Convolutional Neural Networks)

Введение

За последние несколько лет сфера компьютерного зрения (CV) переживает если не второе рождение, то огромный всплеск интереса к себе. Во многом такой рост популярности связан с эволюцией нейросетевых технологий. Например, сверточные нейронные сети (convolutional neural networks или CNN) отобрали себе большой кусок задач по генерации фич, ранее решаемых классическими методиками CV: HOG, SIFT, RANSAC и т.д.

Маппинг, классификация изображений, построение маршрута для дронов и беспилотных автомобилей — множество задач, связанных с генерацией фич, классификацией, сегментацией изображений могут быть эффективно решены с помощью сверточных нейронных сетей.

Распознавание дорожных знаков с помощью CNN: Инструменты для препроцессинга изображений - 1
MultiNet как пример нейронной сети (трех в одной), которую мы будем использовать в одном из следующих постов. Источник.
Читать полностью »

Выходим на финишную прямую. Чуть больше двух месяцев назад я делилась с вами вводной статьёй о том, для чего нужно машинное обучение в страховой компании и как проверялась реалистичность самой идеи. После чего мы поговорили о тестировании алгоритмов. Сегодня будет последняя статья из серии, в которой вы узнаете об улучшении модели через оптимизацию алгоритмов и их взаимодействие.

Машинное обучение для страховой компании: Улучшение модели через оптимизацию алгоритмов - 1
Читать полностью »

Artisto: опыт запуска нейросетей в production - 1

Эдуард Тянтов (Mail.ru Group)

Меня зовут Эдуард Тянтов, я занимаюсь машинным обучением в компании Mail.ru Group. Я расскажу про приложение стилизации видео с помощью нейронных сетей Artisto, про технологию, которая лежит в основе этого приложения.

Давайте я дам пару фактов о нашем приложении:

  • 1-е мобильное приложение стилизации видео в мире;
  • Уникальная технология стабилизации видео;
  • Приложение с технологией разработаны за 1 месяц.

Читать полностью »

image Всем привет! Это уже четырнадцатый выпуск дайджеста на Хабрахабр о новостях из мира Python.

В сегодняшнем выпуске вы найдёте интересные материалы, касающиеся рефакторинга и тестирования, Docker, фреймворков и многого другого. Присылайте свои актуальные материалы, а также любые замечания и предложения, которые будут добавлены в ближайший дайджест.

А теперь к делу!
Читать полностью »

В этой лекции руководитель компании «Интеллект и инновации» Егор Токунов рассказывает, как нейросети позволяют влиять на двигательные навыки человека и как они могут помочь в реабилитации больных с двигательными нарушениями.

Под катом — расшифровка и часть слайдов.

Читать полностью »

Описание процессов машинного перевода основанного на базе правил (Rule-Based), машинного перевода на базе фраз (Phrase-Based) и нейронного перевода

image

В этой публикации нашего цикла step-by-step статей мы объясним, как работает нейронный машинный перевод и сравним его с другими методами: технологией перевода на базе правил и технологией фреймового перевода (PBMT, наиболее популярным подмножеством которого является статистический машинный перевод — SMT).

Результаты исследования, полученные Neural Machine Translation, удивительны в части того, что касается расшифровки нейросети. Создается впечатление, что сеть на самом деле «понимает» предложение, когда переводит его. В этой статье мы разберем вопрос семантического подхода, который используют нейронные сети для перевода.

Давайте начнем с того, что рассмотрим методы работы всех трех технологий на различных этапах процесса перевода, а также методы, которые используются в каждом из случаев. Далее мы познакомимся с некоторыми примерами и сравним, что каждая из технологий делает для того, чтобы выдать максимально правильный перевод.
Читать полностью »

В этой статье будет продемонстрирована техника обработки информации по биржевым котировкам с помощью пакета pandas (python), а также изучены некоторые «мифы и легенды» биржевой торговли посредством применения методов математической статистики. Попутно кратко рассмотрим особенности использования библиотеки plotly.
Одной из легенд трейдеров является понятие «локомотива». Описать ее можно следующим образом: есть бумаги «ведущие» и есть бумаги «ведомые». Если поверить в существование подобной закономерности, то можно «предсказывать» будущие движения финансового инструмента по движению «локомотивов» («ведущих» бумаг). Так ли это? Есть ли под этим основания?
image
Читать полностью »

Пока другие специалисты по машинному обучению и анализу данных выясняют, как прикрутить побольше слоёв к нейронной сети, чтобы она ещё лучше играла в Марио, давайте обратимся к чему-нибудь более приземлённому и применимому на практике.

Кластеризация временных рядов — неблагодарное дело. Даже при группировке статических данных часто получаются сомнительные результаты, что уж говорить про информацию, рассеянную во времени. Однако нельзя игнорировать задачу, только потому что она сложна. Попробуем разобраться, как выжать из рядов без меток немного смысла. В этой статье рассматриваются подтипы кластеризации временных рядов, общие приёмы и популярные меры расстояния между рядами. Статья рассчитана на читателя, уже имевшего дело с последовательностями в data science: о базовых вещах (тренд, ARMA/ARIMA, спектральный анализ) рассказываться не будет.

Нестандартная кластеризация, часть 3: приёмы и метрики для кластеризации временных рядов - 1

Читать полностью »

Метод Уэлфорда — простой и эффективный способ для вычисления средних, дисперсий, ковариаций и других статистик. Этот метод обладает целым рядом прекрасных свойств:

  • достигает отличных показателей по точности решений;
  • его чрезвычайно просто запомнить и реализовать;
  • это однопроходный онлайн-алгоритм, что крайне полезно в некоторых ситуациях.

Оригинальная статья Уэлфорда была опубликована в 1962 году. Тем не менее, нельзя сказать, что алгоритм сколь-нибудь широко известен в настоящее время. А уж найти математическое доказательство его корректности или экспериментальные сравнения с другими методами и вовсе нетривиально.

Настоящая статья пытается заполнить эти пробелы.

Точное вычисление средних и ковариаций методом Уэлфорда - 1

Читать полностью »

Хороший виртуальный ассистент должен не только решать задачи пользователя, но и разумно отвечать на вопрос «Как дела?». Реплик без явной цели очень много, и заготовить ответ на каждую проблематично. Neural Conversational Models — сравнительно новый способ создания диалоговых систем для свободного общения. Его основа — сети, обученные на больших корпусах диалогов из интернета. Борис hr0nix Янгель рассказывает, чем хороши такие модели и как их нужно строить.

Под катом — расшифровка и основная часть слайдов.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js