Рубрика «машинное обучение» - 189

Как искусственный интеллект может спасти email - 1

Электронная почта с одной стороны остается популярным средством коммуникации, с другой — именно при работе с email очень остро встает вопрос информационной перегрузки. Люди получают десятки и сотни писем, архивы переписки состоят из тысяч бесед. Часто разобраться во всем этом многообразии нет никаких сил, а значительная часть приходящей корреспонденции — это мусор, который никто не хочет получать и на который никогда не последует ответа.

Это приводит к тому, что некоторые пользователи — особенно молодежь — все меньше пользуются электронной почтой. Кажется, что будущее email под угрозой из-за развития чат-ботов и мессенджеров, но возможно, у этой технологии еще есть шанс решить свои проблемы. И помочь в этом может искусственный интеллект (AI). Читать полностью »

Привет! Мы с ребятами из Smartcat решили сойти с ума и попробовать перевести на английский все посты, которые были опубликованы здесь до 19 июля 2017 года, а потом оценить, сколько это будет стоить в среднем, если будет переводить Человек VS Машина. Под катом вы узнаете, что у нас из этого получилось.

Сколько стоит перевести Хабр? - 1
Читать полностью »

С момента описания первого искусственного нейрона Уорреном Мак-Каллоком и Уолтером Питтсом прошло более пятидесяти лет. С тех пор многое изменилось, и сегодня нейросетевые алгоритмы применяются повсеместно. И хотя нейронные сети способны на многое, исследователи при работе с ними сталкиваются с рядом трудностей: от переобучения до проблемы «черного ящика».

Если термины «катастрофическая забывчивость» и «регуляризация весов» вам пока ни о чем не говорят, читайте дальше: попробуем разобраться во всем по порядку.

Что может и чего не может нейросеть: пятиминутный гид для новичков - 1Читать полностью »

Как программно разметить спутниковую фотографию? Решение задачи Dstl Satellite Imagery Feature Detection - 1

Привет! Меня зовут Евгений Некрасов, я программист-исследователь в Mail.Ru Group. Сегодня я расскажу о своем решении соревнования по анализу данных Dstl Satellite Imagery Feature Detection, которое было посвящено сегментации спутниковых изображений. В этом соревновании я использовал относительно простой поход к моделированию и занял 7 место из 419 команд. Под катом — рассказ, как мне это удалось.
Читать полностью »

В данной статье я расскажу историю о том, как решал конкурс ML Boot Camp V “Предсказание сердечно-сосудистых заболеваний” и занял в нём второе место.

Постановка задачи и данные

Данные содержали 100 000 пациентов, из которых 70% были в обучающей выборке, 10% для публичного лидерборда (public) и финальных 20% (private), на которых и определялся результат соревнования. Данные представляли собой результат врачебного осмотра пациентов, на основании которого нужно было предсказать, есть ли у пациента сердечно-сосудистое заболевание (ССЗ) или нет (данная информация была доступна для 70% и нужно было предсказать вероятность ССЗ для оставшихся 30%). Другими словами – это классическая задача бинарной классификации. Метрика качества – log loss.

Читать полностью »

Ранее в моей прошлой статье, посвящённой обучению Data Science с нуля, я обещал записаться на специализацию «Машинное обучение и анализ данных», на Coursera и поделится моими впечатлениями о доступности этих знаний для практически абсолютного новичка в области науки о данных. Сказано – сделано! Хотя безусловно, на Хабре уже есть упоминания об этой и аналогичных специализациях, но думаю мои «пять копеек» не помешают.

Цитата из известного фильма в названии статьи и картинка, взяты не случайно, местами мне кажется, что эта специализация доставляла мне почти физическую боль, и было колоссальное желание все бросить, но интерес в итоге взял верх. Поэтому если вам интересно как я с минимально возможными финансовыми затратами прошел эту серию курсов — милости прошу под кат.

«Паровозик, который смог!» или «Специализация Машинное обучение и анализ данных», глазами новичка в Data Science - 1

Читать полностью »

В середине июля закончился контест по машинному обучению ML Boot Camp V от Mail.Ru. Нужно было предсказать наличие сердечно-сосудистых заболеваний по результатам классического врачебного осмотра. Метрикой являлась логарифмическая функция потерь. Полное описание задачи доступно по ссылке.

Знакомство с машинным обучением для меня началось с ML Boot Camp III где-то в феврале 2017 года и какое-то подобие представления что с такими задачами делать начинает складываться у меня только сейчас. Многое из сделанного в 5 контесте — результат в первую очередь изучения собрания статей на kaggle и обсуждений и примеров кода оттуда же. Ниже — слегка переработанный отчет о том, что пришлось сделать, чтобы занять 3 место.
Читать полностью »

Ускорьте ваш сайт с помощью машинного обучения - 1

Многие из нас постоянно думают о производительности веб-приложений: добиваются 60 FPS на медленных телефонах, загружают свои ассеты в идеальном порядке, кэшируют всё что можно, и много чего ещё.

Но не является ли такое представление о производительности веб-приложений слишком ограниченным? С позиции пользователя все эти действия — лишь крошечный кусок большого пирога производительности.

В этой статье мы пройдёмся по всем этапам использования сайта, как если бы это делал обычный человек, измерив длительность каждого из них. И особое внимание уделим конкретному шагу на одном конкретном сайте, который может быть ещё больше оптимизирован. Хочется верить, что решение (которым будет машинное обучение) может быть использовано во многих различных случаях на разных сайтах.
Читать полностью »

Атака на модели машинного обучения сбивает робоавтомобили - 1
Набор экспериментальных изображений с художественными стикерами на разных расстояниях и под разными углами: (а) 5 футов, 0 градусов; (b) 5' 15°; (с) 10' 0°; (d) 10' 30°; (e) 40' 0°. Обман работает на любом расстоянии и под любым углом: вместо знака «Стоп» система машинного обучения видит знак «Ограничение скорости 45 миль»

В то время как одни учёные совершенствуют системы машинного обучения, другие учёные совершенствуют методы обмана этих систем.

Как известно, небольшие целенаправленные изменения в картинке способны «сломать» систему машинного обучения, так что она распознает совершенно другое изображение. Такие «троянские» картинки называются «состязательными примерами» (adversarial examples) и представляют собой одно из известных ограничений глубинного обучения.
Читать полностью »

image

Здравствуй! Данная статья предназначена для тех, кто приблизительно шарит в математических принципах работы нейронных сетей и в их сути вообще, поэтому советую ознакомиться с этим перед прочтением. Хоть как-то понять, что происходит можно сначала здесь, потом тут.

Недавно мне пришлось сделать нейросеть для распознавания рукописных цифр(сегодня будет не совсем её код) в рамках школьного проекта, и, естественно, я начал разбираться в этой белиберде теме. Посмотрев приблизительно достаточно об этом в интернете, я понял чуть более, чем ничего. Но неожиданно(как это обычно бывает) получилось наткнуться на книгу Саймона Хайкина(не знаю почему раньше не загуглил). И тогда началось потное вкуривание матчасти нейросетей, состоящее из одного матана.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js