На развитие компьютерного зрения в последние 10 лет не обращал внимание лишь отстраненный от мира человек. Технология распознавания образов своим процветанием обязана глубокому обучению. Достижения машин поражают воображение.
Читать полностью »
Рубрика «машинное обучение» - 186
Умные сети для рыбаков: как мы учили смартфоны распознавать рыбу
2017-10-24 в 13:14, admin, рубрики: AI, artificial intelligence, CV, Faceapp, ios development, Алгоритмы, машинное обучение, разработка под iOSОт оптимизаций до Machine Learning: интервью с автором Android High Performance Programming
2017-10-24 в 12:41, admin, рубрики: android, java, kotlin, machine learning, ml, mobile, mobius2017, performance, TensorFlow, Блог компании JUG.ru Group, машинное обучение Почти год назад вышла книга Android High Performance Programming. Книжка классная – но требующая комментариев. Скоро автор прилетит в Россию на конференцию Mobius 2017 Moscow, и с ним можно будет пообщаться вживую. Чтобы скоротать ожидание, давайте пообщаемся с Энрике в формате хабро-интервью.
Java или Kotlin? Как писать быстрый код? Можно ли в мобильном приложении использовать Tensorflow и другое машинное обучение? Срочно жмите кнопку «читать дальше»! ⇩
Итак, в гостях у нас
Enrique López Mañas (Энрике Лопес Маньяс) — независимый IT-консультант и разработчик, обладатель звания Android Google Developer Expert. Занимается мобильными технологиями и программированием более 10 лет, входит в десятку самых активных в Германии участников сообщества Java Open Source. Последнее время «заболел» Big Data и ML-технологиями, о чем мы с ним тоже сейчас кратко поговорим.
“Главный вызов — это кадровый голод” — панельная дискуссия о подборе команд по работе с данными. Data Science Week 2017
2017-10-24 в 6:44, admin, рубрики: big data, data engineering, data mining, data science, data scientist, machine learning, python, Блог компании New Professions Lab, машинное обучениеПривет! Публикуем заключительную часть обзора Data Science Week 2017, прошедшем в Москве 12-14 сентября. Сегодня расскажем о панельной дискуссии по теме “Подбор команд по работе с данными и оценка их эффективности”. Модератором выступила Ольга Филатова, вице-президент по персоналу и образовательным проектам Mail.ru Group, а участниками были Виктор Кантор (Яндекс), Андрей Уваров (МегаФон), Павел Клеменков (Rambler&Co) и Александр Ерофеев (Сбербанк).
Краткий курс машинного обучения или как создать нейронную сеть для решения скоринг задачи
2017-10-23 в 17:22, admin, рубрики: data mining, data science, genetic algorithms, machine learning, neural networks, python, Алгоритмы, генетический алгоритм, градиентный спуск, машинное обучение, нейронные сети, оптимизационные задачи, Программирование, скоринг, эволюционный алгоритмМы часто слышим такие словесные конструкции, как «машинное обучение», «нейронные сети». Эти выражения уже плотно вошли в общественное сознание и чаще всего ассоциируются с распознаванием образов и речи, с генерацией человекоподобного текста. На самом деле алгоритмы машинного обучения могут решать множество различных типов задач, в том числе помогать малому бизнесу, интернет-изданию, да чему угодно. В этой статье я расскажу как создать нейросеть, которая способна решить реальную бизнес-задачу по созданию скоринговой модели. Мы рассмотрим все этапы: от подготовки данных до создания модели и оценки ее качества.
Вопросы, которые разобраны в статье:
• Как собрать и подготовить данные для построения модели?
• Что такое нейронная сеть и как она устроена?
• Как написать свою нейронную сеть с нуля?
• Как правильно обучить нейронную сеть на имеющихся данных?
• Как интерпретировать модель и ее результаты?
• Как корректно оценить качество модели?
Читать полностью »
«4 свадьбы и одни похороны» или линейная регрессия для анализа открытых данных правительства Москвы
2017-10-22 в 22:42, admin, рубрики: data science, python, анализ данных, Занимательные задачки, машинное обучение, Москва, открытые данныеНесмотря на множество замечательных материалов по Data Science например, от Open Data Science, я продолжаю собирать объедки с пиршества разума и продолжаю делится с вами, своим опытом по освоению навыков машинного обучения и анализа данных с нуля.
В последних статьях мы рассмотрели пару задачек по классификации, в процессе потом и кровью добывая себе данные, теперь пришло время регрессии. Поскольку ничего светотехнического в этот раз под рукой не оказалось, я решил поскрести по другим сусекам.
Помнится, в одной из статей я агитировал читателей посмотреть в сторону отечественных открытых данных. Но поскольку я не барышня из рекламы «кефирчика для пищеварения» или шампуня с лошадиной силой, совесть не позволяла советовать что-либо, не испытав на себе.
С чего начать? Конечно с открытых данных правительства РФ, там же ведь целое министерство есть. Мое знакомство с открытыми данными правительства РФ, было примерно, такое же как на иллюстрации к этой статье. Нет ну не то чтобы мне совсем не был интересен реестр Кинозалов города Новый Уренгой или перечень прокатного оборудования катка в Туле, просто для задачи регрессии они не очень подходят.
Если порыться думаю и на сайте ОД правительства РФ можно найти, что-то путное, просто не очень легко.
Данные Минфина я тоже решил оставить, на потом.
Пожалуй, больше всего мне понравились открытые данные правительства Москвы, там я присмотрел пару потенциальных задачек и выбрал в итоге Сведения о регистрации актов гражданского состояния в Москве по годам
Что вышло из применения минимальных навыков в области линейной регрессии можно в краткой форме посмотреть на GitHub, ну и конечно же заглянув под кат.
Как мы участвовали в хакатоне М.Видео
2017-10-22 в 17:21, admin, рубрики: data mining, М.Видео, машинное обучение, хакатонВ последние выходные сентября наша команда приняла участие в хакатоне М.Видео по анализу данных. На выбор было предложено два задания: первое — генерировать описание продукта на основе отзывов о товарах, второе — выделять важнейшие характеристики товаров на основе справочника, данных о совместных просмотрах и добавлении в корзину. Мы решали оба задания. Под катом история, почему мы завалили этот хакатон и чему научились.
Agent Intelligence от ServiceNow — нейронные сети на службе у техподдержки
2017-10-22 в 13:25, admin, рубрики: service desk, service now, Блог компании ИТ Гильдия, машинное обучениеПо данным опроса ServiceNow, 89% ИТ-руководителей используют либо внедряют технологии машинного обучения в своих организациях. Из них 87% отмечают, что автоматизация бизнес-процессов приносит большую пользу для бизнеса: экономит время, средства и человеческие ресурсы.
Внедрение машинного обучения требует серьезных изменений в работе организации. Однако на эти изменения — согласно тому же опросу — решились пойти только 48% респондентов. Помимо организационных изменений использование машинного обучения требует привлечения специалистов — в частности, аналитиков по данным. А спрос на них, согласно исследованию IBM, намного превышает предложение. По прогнозам, к 2020 году ситуация станет ещё хуже. Расскажем, чем в этой ситуации может помочь решение от ServiceNow.
Практика анализа данных в прикладной психологии
2017-10-21 в 10:41, admin, рубрики: catboost, data mining, python, R, random forest, машинное обучение, психология, статистика1. Вступление
Показан процесс анализа информации в сфере прикладной психологии. Если быть более точным, то я поделюсь своим опытом поиска различий между двумя группами людей. Будет показан один из самых популярных сценариев решения подобной задачи, а также приведены примеры исходного кода на языках программирования R и Python. Важно понимать, что вся изложенная информация является моим личным субъективным мнением.
“Без data engineer-а ценность модели аналитика стремится к нулю” — интервью с дата инженером Николаем Марковым
2017-10-20 в 12:43, admin, рубрики: big data, data engineering, data mining, data science, data scientist, machine learning, python, Блог компании New Professions Lab, машинное обучениеПривет! Data Engineering становится все более популярным, многие компании постепенно открывают соответствующие вакансии. В связи с этим мы взяли интервью у дата инженера и преподавателя на программах “Специалист по большим данным” и “Data Engineer” Николая Маркова о том, что должны уметь data scientist-ы и data engineer-ы, чего им чаще всего не хватает и как найти свое место в анализе данных.
Открытая трансляция из главного зала SmartData 2017: речь не про решения — речь про эволюцию
2017-10-20 в 6:09, admin, рубрики: AI, big data, BigData, catboost, cgi, data science, deep learning, Hadoop, machine learning, Блог компании JUG.ru Group, машинное обучение, свёрточная нейросеть, сверточные нейронные сети, свёрточные сетиКак мы уже неоднократно сообщали ранее, в этом году компания JUG.ru Group решила заглянуть в будущее и разобраться, какая необходимость двум серым ящикам взаимодействовать друг с другом впустить в наш мир дозу сакральных знаний по Big Data и машинному обучению — мы сделали конференцию SmartData 2017, которая пройдёт в Питере 21 октября.
Зачем мы собираем конференцию по Big Data и машинному обучению? Потому что не можем не собрать. И чтобы обратить в наше братство как можно большее количество разработчиков, мы традиционно открываем бесплатную онлайн-трансляцию из первого зала конференции.
Итак, бесплатная онлайн-трансляция из главного зала SmartData 2017 начнётся 21 октября 2017 года в 9:30 утра по московскому времени. Только вы, мы и будущее. В этот раз трансляция будет доступна в 2k — доставайте ваши 4k мониторы!
Ссылка на онлайн-трансляцию первого трека конференции SmartData 2017 и краткое описание докладов — под катом.
Читать полностью »