Рубрика «машинное обучение» - 183

В этой статье пойдет речь о том, как строятся персональные рекомендации на Avito. Исторически бизнес-модель Avito устроена так, что выдача объявлений в поиске происходит по времени их размещения. При этом пользователь может покупать дополнительные услуги для того, чтобы поднять свое объявление в поиске в том случае, если со временем объявление опустилось далеко в поисковой выдаче и перестало набирать просмотры и контакты.

В контексте данной бизнес-модели не очевидно, зачем нужны персональные рекомендации. Ведь они как раз нарушают логику сортировки по времени и те пользователи, которые платят за поднятие объявления, могут обидеться за то, что чье-то другое объявление мы «поднимаем» и показываем пользователю совершенно бесплатно только потому, что наша рекомендательная модель посчитала это объявление более релевантным для какого-то пользователя.

Однако сейчас персональные рекомендации становятся “must have” для классифайдов (и не только) по всему миру. Мы хотим помогать пользователю в поиске того, что ему нужно. Уже сейчас всё более значительная доля просмотров объявлений на Avito производится с рекомендаций на главной странице приложений или рекомендаций похожих объявлений на карточке товара. В этом посте я расскажу, какие именно задачи решает наша команда в Avito.

Рекомендации на Avito - 1

Читать полностью »

Machine Learning: State of the art - 1

В 2015 году в мир искусства вошло новое слово: «инцепционизм» (inceptionism). Машины научились перерисовывать картины, а уже в 2016 Prisma скачали миллионы людей. Сегодня мы поговорим об искусстве, машинном обучении и искусственном интеллекте с Иваном Ямщиковым, автором нашумевшей «Нейронной Обороны».
Читать полностью »

С развитием нейросетей им придумывают всё более разнообразные способы применения. С их помощью обучаются автопилоты Tesla, а распознавание лиц используется не только для обработки фотографий приложениями типа Prisma, но и в системах безопасности. Искусственный интеллект учат диагностировать болезни. В конце концов, с его помощью даже выигрывают выборы.

Но есть одна сфера, которая традиционно считалась принадлежащей исключительно человеку — творчество. Однако и это утверждение начинают ставить под сомнение. Ли Седоль, проигравший AlphaGo, признался: «Поражение заставило меня засомневаться в человеческой креативности. Когда я увидел, как играет AlphaGo, то усомнился в том, насколько хорошо играю сам». Поэтому в сегодняшнем посте давайте поговорим о том, способны ли роботы ступить на территорию искусства, в пространство креативности, а значит эмоций и восприятия.

«Человек» искусства: способен ли искусственный интеллект творить? - 1Читать полностью »

Компания Comodo Group Inc. сообщает, что во втором квартале этого года количество вредоносных программ выросло почти в 4 раза по сравнению с первым кварталом. Согласно отчету, количество заражений увеличилось с 25 млн до 97 млн.

По данным Лаборатории Касперского, им удалось обнаружить и отразить 45 тыс. атак червя WannaCry в более чем 74 странах. А Petya, новая итерация которого (NotPetya) появилась 27 июня, поразил 2 тыс. компаний с помощью EternalBlue.

Comodo Group сообщают о четырехкратном увеличении числа киберугроз - 1Читать полностью »

Ирина Черепанова и Татьяна Жукова из проекта uKit AI, обучающего нейросеть редизайну сайтов, перевели колонку менеджера команд продуктового дизайнер из Airbnb Амбер Картрайт о том, как умные технологии позволяют улучшать известные продукты.

Машина была и остаётся моим постоянным напарником. С её помощью я преобразую творческие мысли в осязаемый продукт, которым могу делиться с миром. Когда мне было 20 с небольшим и я пришла в дизайн, оставив карьеру в современных танцах, я не могла подумать, что машина станет моим помощником в создании прорывных продуктов.

«Невидимый дизайн»: проектируем вместе с машинами - 1

В наши дни машинный интеллект стремительно развивается, а вслед за ним должны эволюционировать методы и продукты, которые мы проектируем. Перед вами рассказ о проектировании в тандеме с машинами или, как я называю это, о «невидимом дизайне»: работе с искусственным интеллектом и машинным обучением. Инструментами, которые, как я считаю, создают благодатную почву для будущего продуктового дизайна.Читать полностью »

Достижения в глубоком обучении за последний год - 1

Привет. В своей статье я расскажу вам, что интересного произошло в мире машинного обучения за последний год (в основном в Deep Learning). А произошло очень многое, поэтому я остановился на самых, на мой взгляд, зрелищных и/или значимых достижениях. Технические аспекты улучшения архитектур сетей в статье не приводятся. Расширяем кругозор!

Читать полностью »

Мы регулярно проводим внешние хакатоны на разные темы. Но этим летом мы решили дать возможность проявить себя и сотрудникам – ведь наверняка им хочется порешать задачки на имеющихся данных. Что получилось у коллег в СберТехе — рассказывает samorlov, главный руководитель разработки в Отделе разработки лабораторного кластера супермассивов.
Три идеи, как повысить эффективность разработки: итоги хакатона по Machine Learning в СберТехе - 1
Читать полностью »

Представьте: вы открываете приложение, чтобы в очередной раз заказать такси в часто посещаемое вами место, и, конечно, в 2017 году вы ожидаете, что все, что нужно сделать – сказать приложению «Вызывай», и такси за вами тут же выедет. А куда вы хотели ехать, через сколько минут и на какой машине — все это приложение узнает благодаря истории заказов и машинному обучению. В общем-то все, как в шутках про идеальный интерфейс с единственной кнопкой «сделать хорошо», лучше которого только экран с надписью «все уже хорошо». Звучит здорово, но как же приблизить эту реальность?

Как мы обучали приложение Яндекс.Такси предсказывать пункт назначения - 1

На днях мы выпустили новое приложение Яндекс.Такси для iOS. В обновленном интерфейсе один из акцентов сделан на выборе конечной точки маршрута («точки Б»). Но новая версия – это не просто новый UI. К запуску обновления мы существенно переработали технологию прогнозирования пункта назначения, заменив старые эвристики на обученный на исторических данных классификатор.

Как вы понимаете, кнопки «сделать хорошо» в машинном обучении тоже нет, поэтому простая на первый взгляд задача вылилась в довольно захватывающий кейс, в результате которого, мы надеемся, у нас получилось немного облегчить жизнь пользователей. Сейчас мы продолжаем внимательно следить за работой нового алгоритма и еще будем его менять, чтобы качество прогноза было стабильнее. Эта же технология очень скоро будет работать и в приложении для Android, хотя обновление его интерфейса произойдет немного позже. На полную мощность мы запустимся в ближайшие несколько недель, но под катом уже готовы рассказать о том, что же происходит внутри.

Читать полностью »

header_im

Привет, Коллеги!
27 июня закончилось соревнование на Kaggle по подсчёту морских львов (сивучей) на аэрофотоснимках NOAA Fisheries Steller Sea Lions Population Count. В нем состязались 385 команд. Хочу поделиться с вами историей нашего участия в челлендже и (почти) победой в нём.

Читать полностью »

«Сила машинного обучения окружает нас, методы её окружают нас и связывают. Сила вокруг меня, везде, между мной, тобой, решающим деревом, лассо, гребнем и вектором опорным»

Так бы, наверное, мне сказал Йода если бы он учил меня пути Data Science.

К сожалению, пока среди моих знакомых зеленокожие морщинистые личности не наблюдаются, поэтому просто продолжим вместе с вами наш совместный путь обучения науке о данных от уровня абсолютного новика до … настоящего джедая того, что в итоге получиться.

В прошлых двух статьях мы решали задачу классификации источников света по их спектру (на Python и C# соответственно). В этот раз попробуем решить задачу классификации светильников по их кривой силе света (по тому пятну которым они светят на пол).

Если вы уже постигли путь силы, то можно сразу скачать dataset на Github и поиграться с этой задачей самостоятельно. А вот всех, как и я новичков прошу подкат.

Благо задачка в этот раз совсем несложная и много времени не займет.
«Используй Силу машинного обучения, Люк!» или автоматическая классификация светильников по КСС - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js