Рубрика «машинное обучение» - 173

Классификация звуков с помощью TensorFlow - 1

Игорь Пантелеев, Software Developer, DataArt

Для распознавания человеческой речи придумано множество сервисов — достаточно вспомнить Pocketsphinx или Google Speech API. Они способны довольно качественно преобразовать в печатный текст фразы, записанные в виде звукового файла. Но ни одно из этих приложений не может сортировать разные звуки, захваченные микрофоном. Что именно было записано: человеческая речь, крики животных или музыка? Мы столкнулись с необходимостью ответить на этот вопрос. И решили создать пробные проекты для классификации звуков с помощью алгоритмов машинного обучения. В статье описано, какие инструменты мы выбрали, с какими проблемами столкнулись, как обучали модель для TensorFlow, и как запустить наше решение с открытым исходным кодом. Также мы можем загружать результаты распознавания на IoT-платформу DeviceHive, чтобы использовать их в облачных сервисах для сторонних приложений.

Выбор инструментов и модели для классификации

Сначала нам нужно было выбрать ПО для работы с нейронными сетями. Первым решением, которое показалось нам подходящим, была библиотека Python Audio Analysis.

Основная проблема машинного обучения — хороший набор данных. Для распознавания речи и классификации музыки таких наборов очень много. С классификацией случайных звуков дела обстоят не так хорошо, но мы, пусть и не сразу, нашли набор данных с «городскими» звуками.Читать полностью »

SAS: мы анализировали данные и обучали модели задолго до того, как это стало модным - 1

Наша аналитическая платформа работает в WalMart, Bank of America, Bank of China, Сбербанке, МТС. SAS как предмет преподают в МГУ, ВШЭ, МИФИ, МГТУ им. Баумана, МЭИ, МИИТ и других ВУЗах. А под катом — наша краткая история-знакомство, с которой мы хотим открыть наш блог на Хабре.
Читать полностью »

Предлагается вариант искусственной нейронной сети в виде матрицы, входами и выходами которой являются наборы битов, а нейроны реализуют функции двоичной логики нескольких переменных. Такая сеть значительно отличается от сетей перцептронного типа и может дать такие преимущества как конечное число вариантов полного перебора функций сети, а следовательно и конечное время обучения, сравнительная простота аппаратной реализации.

image

Читать полностью »

Обнаружение аномалий — одна из важнейших функций для решений в области «интернета вещей» (IoT), которые собирают и анализируют временные изменения в потоке данных от различных датчиков. Во многих случаях поток данных со временем не претерпевает значительных изменений. Однако если они появляются, это чаще всего означает, что в системе возникла аномалия, способная нарушить её работу. В этой статье я расскажу, как использовать модуль Time Series Anomaly Detection сервиса машинного обучения Azure Machine Learning для определения аномальных показателей датчиков.

Машинное обучение: анализ временных рядов Azure Machine Learning для поиска аномалий - 1Читать полностью »

Приветствую коллеги! Пришло время продолжить наш спонтанный мини цикл статей, посвящённый основам машинного обучения и анализа данных.

В прошлый раз мы разбирали с Вами задачку применения линейной регрессии к открытым данным правительства Москвы, а в этот раз данные тоже открыты, но их уже пришлось собирать вручную.

Итак, сегодня мы с Вами поднимем животрепещущую тему – обращения граждан в органы исполнительной власти Москвы, нас с вами сегодня ждет: краткое описание набора данных, примитивный анализ данных, применение к ним модели линейной регрессии, а также краткая отсылка к учебным курсам для тех, кто совсем ничего не поймет из материала статьи. Ну и конечно же останется пространство для самостоятельного творчества.

Напомню, что наша статья рассчитана в первую очередь на начинающих любителей Python и его распространённых библиотек из области DataScience. Готовы? Тогда, милости прошу под кат.

«Пишите письма…» или тренируемся работать с данными по обращениям граждан в правительство Москвы (DataScience) - 1

Читать полностью »

Текстовые капчи легко распознаются нейронными сетями глубокого обучения - 1

Нейронные сети глубокого обучения достигли больших успехов в распознавании образов. В тоже время текстовые капчи до сих пор используются в некоторых известных сервисах бесплатной электронной почты. Интересно смогут ли нейронные сети глубоко обучения справится с задачей распознавания текстовой капчи? Если да то как?
Читать полностью »

image

27 ноября на Физтехе состоится очередная встреча из цикла семинаров по искусственному интеллекту «Машинное обучение для поиска темной материи в экспериментах ЦЕРН». Андрей Устюжанин, руководитель ЛАборатории Методов анализа Больших ДАнных (LAMBDA) ВШЭ, доцент кафедры информатики МФТИ и руководитель совместных проектов Школы анализа данных Яндекса и ЦЕРНа расскажет, как LAMBDA работает над применением методов машинного обучения и анализа данных для решения задач физики частиц и астрофизики.

Семинар начнется в 18:30 в аудитории 107 Биокорпуса МФТИ. Для очного участия необходимо предварительно зарегистрироваться. Лекция также будет транслироваться онлайн на официальной странице Физтеха Вконтакте
Читать полностью »

Развитие стратегий устойчивости - 1

В предыдущей статье я описал несколько алгоритмов эволюционных стратегий (evolution strategies, ES), помогающих оптимизировать параметры функции без необходимости явно вычислять градиенты. При решении задач обучения с подкреплением (reinforcement learning, RL) эти алгоритмы можно применять для поиска подходящих наборов параметров модели для агента нейросети (neural network agent). В этой статье я расскажу об использовании ES в некоторых RL-задачах, а также опишу методы поиска более стабильных и устойчивых политик.

Читать полностью »

Космическая съёмка Земли - 1
Cпутниковый снимок в ложных цветах (зелёный, красный, ближний инфракрасный) с пространственным разрешением 3 метра и наложенной маской зданий из OpenStreetMap (спутниковая группировка PlanetScope)

Привет! Мы постоянно расширяем источники данных, которые используем для аналитики, поэтому решили добавить ещё и спутниковые снимки. У нас аналитика по спутниковым снимкам полезна в продуктах для предпринимательства и инвестиций. В первом случае статистика по геоданным поможет понять, в каком месте стоит открывать торговые точки, во втором позволяет анализировать деятельность компаний. Например, для строительных компаний можно посчитать, сколько за месяц было построено этажей, для сельскохозяйственных компаний — сколько гектаров урожая взошло и т.д.

В этой статье я постараюсь дать примерное представление о космической съёмке Земли, расскажу о трудностях, с которыми можно столкнуться, начиная работу со спутниковыми снимками: предварительная обработка, алгоритмы для анализа и библиотеки Python для работы со спутниковыми снимками и геоданными. Так что все, кому интересна область компьютерного зрения, добро пожаловать под кат!
Читать полностью »

Подходит к концу наш первый конкурс по машинному обучению и анализу данных — Multimodal Emotion Challenge Recognition (MERC-2017) на площадке Datacombats. В этом посте мы хотели бы представить небольшой анализ аудитории, своеобразный коллективный «портрет».

Коллективный портрет участников конкурса MERC-2017 - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js