Рубрика «машинное обучение» - 161

Неважно, кто вы — зарекомендовавшая себя компания, или же только собираетесь запустить свой первый сервис — вы всегда можете использовать текстовые данные для того, чтобы проверить ваш продукт, усовершенствовать его и расширить его функциональность.

Обработкой естественного языка (NLP) называется активно развивающаяся научная дисциплина, занимающаяся поиском смысла и обучением на основании текстовых данных.

Как вам может помочь эта статья

За прошедший год команда Insight приняла участие в работе над несколькими сотнями проектов, объединив знания и опыт ведущих компаний в США. Результаты этой работы они обобщили в статье, перевод которой сейчас перед вами, и вывели подходы к решению наиболее распространенных прикладных задач машинного обучения.

Мы начнем с самого простого метода, который может сработать — и постепенно перейдем к более тонким подходам, таким как feature engineering, векторам слов и глубокому обучению.

После прочтения статьи, вы будете знать, как:

  • осуществлять сбор, подготовку, и инспектирование данных;
  • строить простые модели, и осуществлять при необходимости переход к глубокому обучению;
  • интерпретировать и понимать ваши модели, чтобы убедиться, что вы интерпретируете информацию, а не шум.

Пост написан в формате пошагового руководства; также его можно рассматривать в качестве обзора высокоэффективных стандартных подходов.
Читать полностью »

Как создать мощнейший искусственный интеллект? Один из способов — использовать модели машинного обучения с данными, которые распространяются через маркетплейсы, основанные на блокчейне. Зачем здесь блокчейн? Именно с его помощью в будущем мы можем ожидать появления открытых электронных бирж, где каждый сможет продавать свои данные, не нарушая конфиденциальность. А разработчики — выбирать и приобретать наиболее полезную информацию для своих алгоритмов. В этом посте мы расскажем о развитии и перспективах таких площадок.

Каким будет Web 3.0: блокчейн-маркетплейсы для машинного обучения - 1
Читать полностью »

Если пять лет назад нейронная сеть считалась «тяжеловесным» алгоритмом, требующим железа, специально предназначенного для высоконагруженных вычислений, то сегодня уже никого не удивить глубокими сетями, работающими прямо на мобильном телефоне.
MobileNet: меньше, быстрее, точнее - 1
В наши дни сети распознают ваше лицо, чтобы разблокировать телефон, стилизуют фотографии под известных художников и определяют, есть ли в кадре хот-дог.

В этой статье мы поговорим о MobileNet, передовой архитектуре сверточной сети, позволяющей делать всё это и намного больше.
Читать полностью »

Разработка AI для пошаговой игры на Node.js (часть 1) - 1
Всем привет!
Прошло целых полтора года с момента написания моей первой статьи на Хабре. С тех пор проект FOTM претерпел ряд изменений. В начале пройдёмся вкратце по всем модернизациям, а затем перейдём к детальному разбору основной фичи — AI.Читать полностью »

image

Всем привет! Новый год, новый Spark, новый Moscow Spark! Мы стартуем новый сезон нашего замечательного мероприятия 19 апреля на Мансарде Rambler&Co. Фреймворк не стоит на месте и мы тоже, в этот раз представим новый сайт сообщества и опробуем формат со звездой из-за рубежа.
Читать полностью »

Исследователь лаборатории ИИ Сбербанка – о задачах Data Science и RnD - 1

Нейронные сети – это не только развлекательная Prisma да FindFace. Сегодня машинное обучение и Big Data способны решать реальные бизнес-задачи. О новых технологиях в B2B-секторе знает бывший руководитель подразделения Data Science в МТС, разработчик алгоритма автодополнения запросов в поисковике «Яндекса» Дмитрий Бабаев.

Сейчас он работает исследователем в лаборатории искусственного интеллекта в Сбербанке. К сожалению, большинство разработок банка – коммерческая тайна, но обо всём, что было позволительно, специалист охотно рассказал. Читать полностью »

Рубрика «Читаем статьи за вас». Декабрь 2017 — Январь 2018 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Читать полностью »

image
Dispute about eternal

Сердечно приветствую всех Хабравчан! С момента выхода первой части "Истинной реализации" (рекомендую ознакомиться) прошло достаточно много времени. Как внятных обучающих статей не было, так и нет, поэтому я решил подарить Вам возможность узнать от А до Я, как написать программу для распознавания цифр, в связи с тем, что мои знания в этой области заметно возросли. Как и в прошлый раз, предупреждаю, что данная статья ориентирована на тех, кто понимает основы работы нейронных сетей, но не понимает, как создать их «низкоуровневую», истинную реализацию. Приглашаю под кат ознакомиться с сим творением тех, кому надоели убогие реализации XOR, общая теория, использование Tensor Flow и др. Действующие лица: Шарпей, прошлогодняя Визуальная Студия, самодельный Набор Данных, Воплощение чистого разума и Ваш покорный слуга…

Читать полностью »

Машинное обучение и анализ данных: разбор программы обучения и основные проблемы - 1
Машинное обучение и анализ данных — обзор Специализации от Яндекcа & МФТИ (5 курсов + финальный проект), предложенной на образовательной платформе Coursera. Статья представляет собой исключительно мнение автора как выпускника, не является рекламой и/или умышленной критикой, а скорей служит вводным инструктажем для тех, кто начинает обучение по данной тематике.

Вам может быть полезна данная статья если:

  • Вы хотите “попробовать на вкус” программирование на Python и понять для себя основные принципы работы моделей машинного обучения, использующихся для работы с данными
  • Вы рассматриваете для себя возможность пройти какой-либо обучающий курс по данной тематике и вам интересно оценить, насколько Специализация от Яндекса & МФТИ подходит для этого

Читать полностью »

Сегодня замечательный день (if you know what I mean), чтобы анонсировать нашу новую программу — Специалист по разметке данных.

На текущий момент в сфере искусственного интеллекта сложилась такая ситуация, при которой для обучения сильной нейронной сети нужны несколько компонентов: железо, софт и, непосредственно, данные. Много данных.

Железо, в общем-то, доступно каждому через облака. Да, оно может быть недешевым, но GPU-инстансы на EC2 вполне по карману большинству исследователей. Софт опенсорсный, большинство фреймворков можно скачать себе куда-то и работать с ними. Некоторые сложнее, некоторые проще. Но порог для входа вполне приемлемый. Остается только последний компонент — это данные. И вот здесь и возникает загвоздка.

Deep learning требует действительно больших данных: сотни тысяч–миллионы объектов. Если вы хотите заниматься, например, задачей классификации изображений, то вам, помимо самих данных, нужно передать нейронке информацию, к какому классу относится тот или иной объект. Если у вас задача связана еще и с сегментацией изображения, то получение хорошего датасета — это уже фантастически сложно. Представьте, что вам нужно на каждом изображении выделить границы каждого объекта.

Специалист по разметке данных - 1

В этом посте хочется сделать обзор тех инструментов (коммерческих и бесплатных), которые пытаются облегчить жизнь этих прекрасных людей — разметчиков данных.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js