Рубрика «машинное обучение» - 154

Доброго времени суток, уважаемыее! В данной публикации речь пойдет о модели прогноза спроса на товары в сетевых магазинах и ее реализации на C++.

Постановка задачи

Допустим, у нас имеется сеть магазинов, в каждый из которых завозят товары. Товары (для модели прогноза) попадают в каждый магазин произвольным образом. За некий период времени мы имеем статистику — сколько в каждом магазине продано тех или иных товаров. Требуется спрогнозировать продажи товаров за период времени, аналогичный выбранному, для всех магазинов по всем товарам, которые в них не завозились.

Примечания и допущения постановки задачи

  • Товары, завезенные в магазины, не заканчивались за период сбора статистики.
  • Если в магазин завезли новые для него товары (при том, что старые товары остались), продажи не перераспределяться между старыми и новыми товарами. Статистика по старым товарам останется прежней, просто кто-то дополнительно покупает новые товары. Прогнозирование при невыполнении этого условия потребует дополнительных данных о том, как насыщается спрос при увеличении количества товаров.
  • Период, за который собирали статистику, и период, для которого нужно сделать прогноз, идентичны по спросу.

Читать полностью »

image

Привет. В этот раз снова о Data Science. Думаю, многим знакома методология CRISP-DM, о которой говорят на большинстве курсов, но вот про первый пункт (business understanding) информации достаточно мало, в зря, ведь он очень важный.

Поэтому в этой статье мы поговорим о взаимодействии с бизнесом и о том, какие обычно бывают проблемы и сложности в этом вопросе. Давайте разберем все на примере.Читать полностью »

Привет! В течение последних нескольких лет интерес к технологиям машинного обучения и искусственного интеллекта быстро рос. Решение H2O.ai становится все более популярным в этой сфере: оно поддерживает быстрые алгоритмы машинного обучения в оперативной памяти и недавно получило поддержку глубокого обучения. Сегодня поговорим о разработке с использованием H2O.

Просто добавь воды: разработка с H2O.ai - 1Читать полностью »

Мы поговорим об использовании модных «Word embedding» не совсем по назначению — а именно для исправления опечаток (строго говоря, и ошибок тоже, но мы предполагаем, что люди грамотные и опечатываются). На хабре была довольно близкая статья, но здесь будет немного о другом.

Исправление опечаток, взгляд сбоку - 1
Визуализация Word2Vec модели, полученная студентом. Обучалась на «Властелине колец». Явно что-то на черном наречии.
Читать полностью »

Сегодня, хочу рассказать об интересном подходе по улучшению качества изображения. Официальное название подхода Super Resolution. Улучшение качества изображения программными методами известно с начала появления цифровых снимков, но в последние 3 года произошёл качественный скачок, вызванный использованием нейронных сетей.

Улучшение качества изображения с помощью нейронной сети - 1

Пример улучшения качества изображения с использованием технологии Super Resolution.
Читать полностью »

Задача алгоритмов искусственного интеллекта обучиться, основываясь на предоставленной выборке, для последующего предсказания данных. Однако, наиболее распространенная задача о которой говорят в большинстве учебниках — это предсказание одного значения, того или иного множества признаков. Что если нам нужно получить обратные данные? То есть, получить определенное количество признаков, основываясь на одном или больше значении.
Читать полностью »

Всем привет. Этой статьей я начинаю серию рассказов о состязательный сетях. Как и в предыдущей статье я подготовил соответствующий докер-контейнер в котором уже все готово для того чтобы воспроизвести то что написано здесь ниже. Я не буду копировать весь код из примера сюда, только основные его части, поэтому, для удобства советую иметь его рядом для более простого понимания. Докер контейнер доступен здесь, а ноутбук, utils.py и докерфайл здесь.

Несмотря на то, что фреймворк состязательных сетей был предложен Йеном Гудфеллоу в его уже знаменитой работе Generative Adversarial Networks ключевая идея пришла к нему из работ по доменной адаптации(Domain adaptation), поэтому и начнем мы обсуждение состязательных сетей именно с этой темы.

Представьте, что у вас есть два источниках данных о похожих наборах объектов. Например это могут быть медицинские записи разных социально-демографических групп(мужчины/женщины, взрослые/дети, азиаты/европейцы...). Типичные анализы крови представителей разных групп будут отличаться, поэтому модель, предсказывающая, скажем, риск сердечно-сосудистых заболеваний(ССЗ), обученная на представителях одной выборки не может применяться к представителям другой выборки.

Читать полностью »

Последние несколько лет в развитии глубоких нейронных сетей происходит настоящая революция: возникают новые архитектуры, совершенствуются фреймворки для разработчиков, а железо для экспериментов можно получить совершенно бесплатно — например, в рамках проекта Google colaboratory. Всем, кому интересно как применить предобученные модели из репозитория Tensorflow Object Detection API к решению своей задачи, используя мощности Colaboratory — добро пожаловать под кат.
Читать полностью »

Во время хайпа по цифровой экономике и ***чейнам самое время обратить внимание, как привнести «человеческое» в технологии и как технологии помогают понять и улучшить и масштабировать «человеческое». В этом нам поможет суровый Марвин Мински, который своим беспощадным разумом анализирует чувства, эмоции, боль, влюбленности и сознание.

image

Глава 5. Уровни Психической Деятельности

«Мы, очевидно, являемся уникальным видом благодаря способности создавать символы, а также способности контролировать условия нашего существования, используя эти символы. Наша способность представлять и моделировать реальность подразумевает, что мы можем приблизительно оценивать различные порядки (разрядности) бытия и… дает нам ощущение управления собственным опытом».
— Хайнц Паджелс, «Мечты Разума» (The Dreams of Reason)

Ни один человек не обладает силой вола, скрытностью кошки или скоростью антилопы, но наш вид превосходит всех остальных в способности изобретать новые способы мыслить. Мы изготавливаем оружие, одежду и жилища. Мы постоянно развиваем новые формы искусства. Мы непревзойдены в создании новых социальных соглашений, создании сложных законов, которые изначально применяем, а затем ищем всевозможные способы уклониться от них.

Что позволяет нашим умам генерировать так много новых вещей и идей? В этой главе будет предложена схема, которая сводит все наши ресурсы к шести различным уровням процессов.

image

Начиная с просты инстинктивных реакций, каждый последующий уровень строится на предыдущем уровне до тех пор, пока они не будут охватывать процессы, которые задействуют наши самые высокие идеи и личные цели. Для того, чтобы понять зачем нам нужно столь много уровней, давайте вновь рассмотрим пример, который был введён в §4-2.
Читать полностью »

Обработка текстов на естественных языках - 1

Сегодня мы затрагиваем такую интересную тему, как естественные языки. Сейчас в эту область вкладываются очень большие деньги и в ней решают немало разнообразных задач. Она привлекает внимание не только индустрии, но и научного сообщества.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js