Рубрика «машинное обучение» - 142

image Сейчас в прессе часто встречаются новости вида “AI научился писать в стиле автора Х”, или “ML создает искусство”. Посмотрев на это, мы решили – было бы здорово, если эти громкие заявления можно было бы проверить на деле.

Можно ли устроить борьбу ботов по написанию стихотворений? Можно ли сделать из этого понятную и воспроизводимую соревновательную историю? Теперь можно точно сказать, что это возможно. А о том, как написать свой первый алгоритм по генерации стихотворений, читайте дальше.
Читать полностью »

Некоторое время назад в моей ленте в фейсбуке всплыла ссылка на книгу Эндрю Ына (Andrew Ng) "Machine Learning Yearning", которую можно перевести, как "Страсть к машинному обучению" или "Жажда машинного обучения".

image<img src="<img src="https://habrastorage.org/webt/ds/rc/ct/dsrcctfottkedkf7o1hxbqsoamq.png" />" alt="image"/>

Людям, интересующимся машинным обучением или работающим в этой сфере представлять Эндрю не нужно. Для непосвященных достаточно сказать, что он является звездой мировой величины в области искусственного интеллекта. Ученый, инженер, предприниматель, один из основателей Coursera. Автор отличного курса по введению в машинное обучение и курсов, составляющих специализацию "Глубокое обучение" (Deep Learning).

Читать полностью »

Привет! Меня зовут Денис Кирьянов, я работаю в Сбербанке и занимаюсь проблемами обработки естественного языка (NLP). Однажды нам понадобилось выбрать синтаксический парсер для работы с русским языком. Для этого мы углубились в дебри морфологии и токенизации, протестировали разные варианты и оценили их применение. Делимся опытом в этом посте.

Изучаем синтаксические парсеры для русского языка - 1
Читать полностью »

Время пополнять копилку хороших русскоязычных докладов по Machine Learning! Копилка сама не пополнится!

В этот раз мы познакомимся с увлекательным рассказом Андрея Боярова про распознавание сцен. Андрей — программист-исследователь, занимающийся машинным зрением в компании Mail.Ru Group.

Распознавание сцен — одна из активно применяемых областей машинного зрения. Задача эта посложнее, чем изученное распознавание объектов: сцена — более комплексное и менее формализованное понятие, выделить признаки труднее. Из распознавания сцен вытекает задача распознавания достопримечательностей: нужно выделить известные места на фото, обеспечив низкий уровень ложных срабатываний.

Это 30 минут видео с конференции Smart Data 2017. Видео удобно смотреть дома и в дороге. Для тех же, кто не готов столько сидеть у экрана, или кому удобней воспринимать информацию в текстовом виде, мы прикладываем полную текстовую расшифровку, оформленную в виде хабростатьи.

Читать полностью »

image

1 сентября Mail.Ru Group и сообщество Open Data Science проведут крупнейший митап Moscow Data Science.

Откроем новый учебный и рабочий год целым днём секций и нетворкинга!
Читать полностью »

Вопреки расхожему мнению, машинное обучение — изобретение не XXI века. За последние двадцать лет появились лишь достаточно производительные аппаратные платформы, чтобы нейросети и другие модели машинного обучения было целесообразно применять для решения каких-либо повседневных прикладных задач. Подтянулись и программные реализации алгоритмов и моделей.

Соблазн сделать так, чтобы машины сами заботились о нашей безопасности и защищали людей (довольно ленивых, но сообразительных), стал слишком велик. По оценке CB Insights почти 90 стартапов (2 из них с оценкой более миллиарда долларов США) пытаются автоматизировать хотя бы часть рутинных и однообразных задач. С переменным успехом.

image
Читать полностью »

Подробный разбор матча по Dota 2 между OpenAI и людьми в формате 5x5. Люди проиграли - 1

Вчера, 5 августа, в Сан-Франциско состоялся шоу-матч между людьми и ботами OpenAI в дисциплине Dota 2. Еще в 2017 году в рамках шоу-матчей The International 2017 люди сражались с OpenAI в формате «1х1 mirror mid» и с целым рядом ограничений в пользу ботов (запрет на использование ряда предметов и механик), что закончилось поражением профессиональных игроков-мидеров.

Так как Dota 2 — дисциплина крайне разносторонняя и сложная для освоения, встреча между людьми и ИИ вновь проводилась с целым рядом ограничений, которые, однако, не слишком радикально влияли на игровой процесс:

  • пул из 18 героев в режиме Random Draft (Axe, Crystal Maiden, Death Prophet, Earthshaker, Gyrocopter, Lich, Lion, Necrophos, Queen of Pain, Razor, Riki, Shadow Fiend, Slark, Sniper, Sven, Tidehunter, Viper, или Witch Doctor);
  • без Divine Rapier, Bottle;
  • без подконтрольных существ и иллюзий;
  • матч с пятью курьерами (ими нельзя скаутить и танковать);
  • без использования скана.

Самое серьезное ограничение: крайне малый пул героев для обеих сторон. Сейчас в Dota 2 существует 115 персонажей с различными способностями и механиками их применения. OpenAI пока может совладать лишь с 18 из них. Встреча была максимально приближена к «реальным» условиям и проводилась в формате 5х5. Против ИИ играли обычные люди, в прошлом когда-то причастные к киберспорту, но сейчас не являющиеся киберспортсменами. Единственная поблажка для людей заключалась в том, что реакция ботов была ограничена 200 мс, чтобы избежать ситуаций с мгновенным «прожатием» кнопок. Итог: команда ИИ выиграла у людей со счетом 2-0 по картам. Выиграть у OpenAI удалось только после того, как героев для ИИ выбрал зрительный зал (Slark, Sven, Axe, Riki и Queen of Pain), по оценкам OpenAI шанс на победу с таким драфтом составлял всего 2,9%. Кроме этого, до начала главного матча, с ботами могли сыграть рядовые гости мероприятия, и в этих встречах доминирование ИИ было еще более наглядно, что впечатляет.
Читать полностью »

image

Недавно, вместе с командой друзей-астрофизиков, я закончила проект, целью которого был поиск далеких, скрытых тканью космоса галактик и их скоплений. Сейчас я поделюсь с вами тем, что мы сделали в результате этой непростой работы. Читать полностью »

Привет! Data Science уже давно стала привлекательной областью, и все больше и больше людей хотят сменить свою профессиональную траекторию и начать работать с большими данными. Своей историей перехода в data science, советами для начинающих и продвинутых data scientist’ов поделился Кирилл Данилюк, Data Scientist компании RnD Lab. Кроме этого, поговорили о необходимых качествах data scientist’а, о разметке данных, отличие ML Engineer от data scientist, текущих проектах, крутых командах и людях, чья работа вдохновляет.

image

— Как ты пришел в data science? Чем тебя изначально привлекала область работы с данными?

— У меня довольно нетипичный бэкграунд: в дату я пришел из мира яндексового PM’ства (Project Management — прим. автора), когда меня позвали в ZeptoLab, пожалуй, лучшую российскую игровую компанию. Я сделал им прототип аналитической системы, дэшборды, фактически в первый раз начав писать код, который использовал кто-то другой. Код был ужасный, но это была реальная практика. Формально, конечно, я координировал работу двух аутсорсеров, но код они писали именно по этому прототипу. Я тогда еще не знал, что примерно это и есть data science, что я им и занимаюсь, пусть парт-тайм. Так что знакомство случилось довольно органически.

Уже тогда было видно, что идет целый сдвиг в парадигме разработки — вместо классического императивного программирования, когда ты жестко задаешь условия, наступает эра, когда машина сама с помощью данных сможет себя обучать. Видеть эту смену было невероятно круто, и очень хотелось попасть в число тех разработчиков новой эпохи.
Читать полностью »

Всем привет!

А у нас тут запускается, можно сказать, почти новый курс — Data Scientist. Почему почти? Просто вырос он из курса по BigData, но теперь с куда большим упором в работу с данными, обучением, сети и вот это всё. Новые преподаватели, немного (примерно процентов двадцать) новой программы курсы и доработанной старой, ну и как всегда — статьи, которые нам показались интересными в рамках курса и открытые уроки по этим же темам.

Поехали!

Почему вам стоит улучшить тренировочные данные, и как это сделать - 1Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js