Рубрика «машинное обучение» - 135

Создаем свой датасет с пришельцами - 1

Сегментацией людей с помощью нейронных сетей уже никого не удивишь. Есть много приложений, таких как Sticky Ai, Teleport Live, Instagram, которые позволяют выполнять такую сложную задачу на мобильном телефоне в реалтайме.

Итак, предположим планета Земля столкнулась с внеземными цивилизациями. И от пришельцев из звездной системы Альфа Центавра поступает запрос на разработку нового продукта. Им очень понравилось приложение Sticky Ai, которое позволяет вырезать людей и делать стикеры, поэтому они хотят портировать приложение на свой межгалактический рынок.

Читать полностью »

Привет! Представляю вашему вниманию перевод статьи «Learning 3D Face Morphable Model Out of 2D Images».

3DMM

Трёхмерная морфируемая модель лица (3D Morphable Model, далее 3DMM)  —  это статистическая модель структуры и текстуры лица, которая используются компьютерном зрении, компьютерной графике, при анализе человеческого поведения и в пластической хирургии.

Неповторимость каждой черты лица делает моделирование человеческого лица нетривиальной задачей. 3DMM создётся для получения модели лица в пространстве явных соответствий. Это означает поточечное соответствие между полученной моделью и другими моделями, позволяющими выполнять морфирование. Кроме того, в 3DMM должны быть отражены трансформации низкого уровня, такие как отличия мужского лица от женского, нейтрального выражения лица от улыбки.
Читать полностью »

Детские приложения массово собирают персональные данные и передают их третьим лицам - 1

К детской продукции всегда выдвигались особые требования. Тут и безопасность, надежность, простота, возможность удаленного управления, если мы говорим о детских устройствах и сервисах, и много чего еще. Функция «родительских контроль» почти так же стара, как и весь цифровой мир, кроме этого вопрос защиты персональных данных детей стоит остро уже достаточно давно.

Но даже если ваш ребенок обладает достаточной технической грамотностью и знаком с правилами поведения в сети (не разглашать свои персональные данные, реальное место жительства, график, маршруты и так далее по вполне понятным нам всем причинам), от утечки этой информации он не защищен. В последнем исследовании говорится, что огромная масса детских приложений с пометкой «до 13 лет» следят за своими юными пользователями так же, как за нами, взрослыми, следят приложения Facebook или Google.

Простенькие игры, цель которых — развитие или развлечение чада, вполне себе собирают всевозможную информацию от устройства и датчиков, в том числе и данные геолокации и акселерометра. Кстати говоря, за детьми в нарушение закона следят и крупные технологические компании и социальные сети. И это серьезная проблема, особенно, если брать в расчет современное машинное обучение и нейросети.
Читать полностью »

(В данной статье не объясняются базовые понятия теории нейронных сетей. Для тех, кто не знаком с ними, перед прочтением советую ознакомиться для исключения дальнейших заблуждений.)

Суть этого текста, заключается в ознакомлении с некоторыми видами нейронных сетей, которые на русскоязычных просторах освещаются, не так часто, если не сказать что и вовсе, крайне редко.
Читать полностью »

Привет. Я бы хотел рассказать об одном из подходов в решении задачи диаризации дикторов и показать, как этот метод можно реализовать на языке python. Чтобы не отпугивать читателя, я не буду приводить сложные математические формулы (отчасти потому что я и сам «не настоящий сварщик»), а постараюсь изложить всё простым языком и рассказать всё так, чтобы понял разработчик, никогда прежде не сталкивавшийся с машинным обучением.
Читать полностью »

В этой статье я бы хотел рассказать про некоторые приемы работы с данными при обучении модели. В частности, как натянуть сегментацию объектов на ббоксы, а также как обучить модель и получить разметку датасета, разметив всего несколько сэмплов.
Пицца аля-semi-supervised - 1
Читать полностью »

Привет!

Сегодня я хочу рассказать о второй части проекта сервиса для идентификации и классификации произведений искусства. Напомню, что мы решали две основные задачи:

  1. поиск картины в базе данных по фотографии, сделанной мобильным телефоном;
  2. определение стиля и жанра картины, которой нет в базе данных.

Сегодня мы рассмотрим применение сверточной нейронной сети для классификации изображений по стилю и жанру.

Глубокое обучение для определения стиля и жанра картин - 1

Поможем Даше разобраться в современном искусстве?

Читать полностью »

Наступил новый учебный год. Студенты получили расписание занятий и стали задумываться о пьянках-гулянках-девушках-гитарах будущей сессии. Написание курсовых, дипломов, статей и диссертаций не за горами. А значит, грядут и анализ текстов на наличие заимствований, и отчеты о проверке, и прочая головная студенческая и администраторская боль. И у сотен тысяч людей (без шуток – мы посчитали!) уже возникает закономерный вопрос – как же обмануть «Антиплагиат». В нашем случае практически все способы обмана так или иначе связаны с искажениями текста. Мы уже научили «Антиплагиат» обнаруживать текст, «искаженный » с помощью перевода с английского на русский ( мы уже писали об этом в первой статье нашего корпоративного блога). Сегодня речь пойдет о том, как обнаруживать самый эффективный, хотя и трудоемкий способ искажения текста – парафраз.

«Трое в лодке, нищета и собаки», или как Антиплагиат ищет парафраз - 1

Читать полностью »

Ботов отличать от людей и правда сложновато. Я и сам толком не могу это сделать. Но зато я придумал неплохой велоси... метод, как отличать в VK «интересных людей» от «не очень интересных». В плане сетевого общения, естественно, а не по жизни.

Выявление содержательных профилей в VK - 1


Читать полностью »

Определение этажности дома по его фотографии без обучения с учителем - 1

В данной статье приведу, на мой взгляд, интересное решение задачи компьютерного распознавания объектов на изображении без использования обучения.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js