В этой статье мы рассмотрим необычное применение нейронных сетей в целом и ограниченных машин Больцмана в частности для решения двух сложных задач квантовой механики — поиска энергии основного состояния и аппроксимации волновой функции системы многих тел.
Читать полностью »
Рубрика «машинное обучение» - 133
Neural Quantum States — представление волновой функции нейронной сетью
2019-03-27 в 11:17, admin, рубрики: deep learning, quantum mechanics, Raiffeisenbank, raiffeisenIT, Блог компании Райффайзенбанк, машинное обучение, физикаВ коре вашего мозга 17 млрд компьютеров
2019-03-26 в 14:24, admin, рубрики: аксон, двуслойная нейросеть, дендрит, дендритный потенциал действия, искусственный интеллект, машинное обучение, мозг, Научно-популярное, нейронНейросеть нейросетей

Изображение brentsview под лицензией CC BY-NC 2.0
В мозг поступает информация из внешнего мира, его нейроны получают данные на входе, производят обработку и выдают некий результат. Это может быть мысль (хочу карри на ужин), действие (сделать карри), изменение настроения (ура, карри!). Что бы ни получилось на выходе, это «что-то» является преобразованием данных со входа (меню) в результат на выходе («куриный дхансак, пожалуйста»). И если представлять мозг как преобразователь с входом в выходом, то неизбежна аналогия с компьютером.
Для одних это просто полезный риторический приём, для других — серьёзная идея. Но мозг — это не компьютер. Компьютером является каждый нейрон. В коре головного мозга 17 миллиардов компьютеров.
Читать полностью »
SNA Hackathon 2019: усложняем архитектуру — упрощаем признаки
2019-03-26 в 13:30, admin, рубрики: machine learning, Алгоритмы, Блог компании Mail.Ru Group, машинное обучение
В этой статье я расскажу про свое решение текстовой части задачи SNA Hackathon 2019. Какие-то из предложенных идей будут полезны участникам очной части хакатона, которая пройдет в московском офисе Mail.ru Group с 30 марта по 1 апреля. Кроме того, этот рассказ может быть интересен и читателям, решающим практические задачи машинного обучения. Так как я не могу претендовать на призы (я работаю в Одноклассниках), я постарался предложить наиболее простое, но при этом эффективное и интересное решение.
Читая про новые модели машинного обучения, я хочу понять, как рассуждал автор, работая над задачей. Поэтому в этой статье я попробую подробно обосновать все компоненты своего решения. В первой части я расскажу про постановку задачи и ограничения. Во второй — про эволюцию модели. Третья часть посвящена результатам и анализу модели. Наконец, в комментариях я постараюсь ответить на любые возникшие вопросы. Нетерпеливые читатели могут сразу посмотреть на финальную архитектуру.
Читать полностью »
Выкупят-не выкупят: наш ML-пилот в «Утконосе»
2019-03-26 в 8:03, admin, рубрики: Блог компании Инфосистемы Джет, машинное обучение, Управление продажамиВ этом посте речь пойдет про пилотное ML-исследование для гипермаркета «Утконос», где мы прогнозировали выкуп скоропортящихся товаров. При этом мы учли данные не только по остаткам на складе, но и производственный календарь с выходными и праздниками и даже погоду (жара, снег, дождь и град нипочем только «Taft’у Три погоды», но не покупателям). Теперь мы знаем, например, что «загадочная русская душа» особенно жаждет мяса по субботам, а белые яйца ценит выше коричневых. Но обо всем по порядку.

Quick Draw Doodle Recognition: как подружить R, C++ и нейросетки
2019-03-25 в 16:09, admin, рубрики: c++, deep learning, image classification, kaggle, keras, monetdb, R, rcpp, Администрирование баз данных, Блог компании Open Data Science, машинное обучение, обработка изображений
Привет!
Осенью прошлого года на Kaggle проходил конкурс по классификации нарисованных от руки картинок Quick Draw Doodle Recognition, в котором среди прочих поучаствовала команда R-щиков в составе Артема Клевцова, Филиппа Управителева и Андрея Огурцова. Подробно описывать соревнование не будем, это уже сделано в недавней публикации.
С фармом медалек в этот раз не сложилось, но было получено много ценного опыта, поэтому о ряде наиболее интересных и полезных на Кагле и в повседневной работе вещей хотелось бы рассказать сообществу. Среди рассмотренных тем: нелегкая жизнь без OpenCV, парсинг JSON-ов (на этих примерах рассматривается интеграции кода на С++ в скрипты или пакеты на R посредством Rcpp), параметризация скриптов и докеризация итогового решения. Весь код из сообщения в пригодном для запуска виде доступен в репозитории.
Содержание:
Откуда берут фотографии для тестирования систем распознавания лиц
2019-03-23 в 15:41, admin, рубрики: FRVT, Multiple Encounter Dataset, NIST, машинное обучение, наборы данных, обработка изображений, обучение нейросети, распознавание лиц
Аннотированная фотография из набора данных Diversity in Faces от IBM
Недавно компания IBM подверглась критике за то, что для обучения нейросетей без разрешения взяла общедоступные фотографии с фотохостинга Flickr и других сайтов, куда пользователи выкладывают свои снимки. Формально всё по закону — все фотографии опубликованы под лицензией Creative Commons — но люди чувствуют дискомфорт из-за того, что ИИ обучается на их лицах. Некоторые даже не знали, что их сфотографировали. Как известно, для съёмки человека в общественном месте не нужно спрашивать у него разрешения.
Читать полностью »
Новый алгоритм в 200 раз ускоряет автоматическое проектирование нейросетей
2019-03-23 в 6:25, admin, рубрики: ImageNet, MnasNet, NAS, neural architecture search, ProxylessNAS, Алгоритмы, машинное обучение, обработка изображений, поиск нейронной архитектуры
ProxylessNAS напрямую оптимизирует архитектуры нейронных сетей для конкретной задачи и оборудования, что позволяет значительно увеличить производительность по сравнению с предыдущими прокси-подходами. На наборе данных ImageNet нейросеть проектируется за 200 GPU-часов (в 200−378 раз быстрее аналогов), а автоматически спроектированная модель CNN для мобильных устройств достигает того же уровня точности, что и MobileNetV2 1.4, работая в 1,8 раза быстрее.
Исследователи из Массачусетского технологического института разработали эффективный алгоритм для автоматического дизайна высокопроизводительных нейросетей для конкретного аппаратного обеспечения, пишет издание MIT News.
Алгоритмы для автоматического проектирования систем машинного обучения — новая область исследований в сфере ИИ. Такая техника называется «поиск нейронной архитектуры (neural architecture search, NAS) и считается трудной вычислительной задачей.
Читать полностью »
Уменьшение зависимости от размеченных данных у генеративно-состязательных сетей
2019-03-22 в 12:00, admin, рубрики: GAN, Google, генеративно-состязательные сети, искусственный интеллект, машинное обучение, нейросетиГенеративно-состязательные сети (ГСС) [Generative Adversarial Networks, GAN] – обладающий интересными возможностями класс глубоких генеративных моделей. Их основная идея – обучение двух нейросетей, генератора, который обучается синтезу данных (к примеру, изображений), и дискриминатора, обучающегося тому, как отличать реальные данных от тех, что синтезировал генератор. Этот подход успешно использовался для высококачественного синтеза изображений, улучшения сжатия изображений, и прочего.
Читать полностью »
Как я не стал специалистом по машинному обучению
2019-03-22 в 5:19, admin, рубрики: it-эмиграция, java, python, карьера, Карьера в IT-индустрии, карьера программиста, машинное обучение, образование, поиск работы, Программирование, стать программистом, Учебный процесс в ITИстории успеха любят все. И на хабре их достаточно много.
«Как я получил работу с зарплатой 300 000 долларов в Кремниевой долине»
«Как я получил работу в Google»
«Как я заработал 200 000 $ в 16 лет»
«Как я попал в Топ AppStore с простым приложением курса валют»
«Как я …» и еще тысяча и одна подобная история.

Это же здорово, что человек добился успеха и решил об этом рассказать! Читаешь и радуешься за него. Но большинство таких историй объединяет одно: ты не можешь повторить путь автора! Либо ты живешь не в то время, либо не в том месте, либо ты родился мальчиком, либо…
Я думаю, что истории неуспеха в этом плане часто бывают полезней. Тебе просто не нужно делать то, что сделал автор. А это, согласитесь, гораздо проще, чем пытаться повторить чей-то опыт. Просто такими историями люди обычно не хотят делиться. А я расскажу.
Как мы предсказывали отток, подойдя к нему как к стихийному бедствию
2019-03-21 в 14:15, admin, рубрики: AI, catboost, data science, Lift Curve, LightGBM, LSTM, xgboost, Блог компании Ростелеком, искусственный интеллект, машинное обучение, распределение Вейбулла, Ростелеком, спутник, хакатон, ХакатоныИногда для того, чтобы решить какую-то проблему, надо просто взглянуть на нее под другим углом. Даже если последние лет 10 подобные проблемы решали одним и тем же способом с разным эффектом, не факт, что этот способ единственный.
Есть такая тема, как отток клиентов. Штука неизбежная, потому что клиенты любой компании могут по множеству причин взять и перестать пользоваться ее продуктами или сервисами. Само собой, для компании отток — хоть и естественное, но не самое желаемое действие, поэтому все стараются этот отток минимизировать. А еще лучше — предсказывать вероятность оттока той или иной категории пользователей, или конкретного пользователя, и предлагать какие-то шаги по удержанию.
Анализировать и пытаться удержать клиента, если это возможно, нужно, как минимум, по следующим причинам:
- привлечение новых клиентов дороже процедур удержания. На привлечение новых клиентов, как правило, нужно потратить определенные деньги (реклама), в то время как существующих клиентов можно активизировать специальным предложением с особыми условиями;
- понимание причин ухода клиентов — ключ к улучшению продуктов и услуг.
Существуют стандартные подходы к прогнозированию оттока. Но на одном из чемпионатов по ИИ мы решили взять и попробовать для этого распределение Вейбулла. Чаще всего его используют для анализа выживаемости, прогнозирования погоды, анализа стихийных бедствий, в промышленной инженерии и подобном. Распределение Вейбулла — специальная функция распределения, параметризуемая двумя параметрами и
.
В общем, вещь занятная, но для прогнозирования оттока, да и вообще в финтехе, использующаяся не так, чтобы часто. Под катом расскажем, как мы (Лаборатория интеллектуального анализа данных) это сделали, попутно завоевав золото на Чемпионате по искусственному интеллекту в номинации «AI в банках».
Читать полностью »

