В рамках реализации большой задачи по Sentiment Analysis (анализ отзывов) я решил уделить некоторое время дополнительному изучению её отдельного элемента — использованию VotingClassifier из модуля sklearn.ensemble как инструмента для построения ансамбля моделей классификации и повышению итогового качества предсказаний. Почему это важно и какие есть нюансы?
Читать полностью »
Рубрика «машинное обучение» - 125
VotingClassifier в sсikit-learn: построение и оптимизация ансамбля моделей классификации
2018-11-18 в 12:50, admin, рубрики: ensemble models, python, scikit-learn, Алгоритмы, анализ данных, машинное обучениеЛандшафт сервисов облачного машинного перевода. Лекция в Яндексе
2018-11-18 в 10:09, admin, рубрики: Блог компании Яндекс, локализация, Локализация продуктов, машинное обучение, машинный перевод, сравнение сервисов, техническая документацияЭто последний доклад с шестого Гипербатона, который мы опубликуем на Хабре. Григорий Сапунов из Intento поделился подходом к оценке качества сервисов облачного машинного перевода, рассказал о результатах оценки и главных отличиях между доступными сервисами.
— Меня зовут Григорий Сапунов, я расскажу про ландшафт сервисов облачного машинного перевода. Мы измеряем этот ландшафт уже больше года, он очень динамичен и интересен.
Читать полностью »
«Возрождение ИИ» – не более, чем дорогое железо и реклама, брошенные на реализацию старой идеи
2018-11-18 в 9:00, admin, рубрики: Google, возрождение ии, глубинное обучение, искусственный интеллект, машинное обучение, философияНикакого духа в машине нет
В последние несколько лет СМИ захлестнули преувеличенные описания технологий искусственного интеллекта (ИИ) и машинного обучения (МО). Кажется, что ещё ни разу в области информатики не было такого, чтобы столько смехотворных заявлений делало такое количество людей, обладающих таким малым представлением о происходящем. Для любого человека, активно занимавшегося передовым компьютерным оборудованием в 1980-х, происходящее кажется странным.
В номере The Atlantic за этот месяц интеллектуал высокого полёта и автор бестселлеров "Sapiens. Краткая история человечества" и " Homo Deus: Краткая история завтрашнего дня", Юваль Ной Харари описывает влияние ИИ на демократию. Самым интересным аспектом статьи является чрезмерная вера Харари в возможности современных технологий ИИ. Он описывает товарища Google, программу для игры в шахматы от компании DeepMind, как «творческую», «обладающую воображением» и «гениальными инстинктами».
Читать полностью »
Как мы заменили спортивного скаута нейронной сетью
2018-11-16 в 7:00, admin, рубрики: computer vision, deep learning, image processing, neural networks, segmentation, Алгоритмы, Блог компании Constanta, искусственный интеллект, машинное обучение, обработка изображений
Да, действительно, мы смогли заменить нейронной сетью спортивного скаута и стали автоматически собирать данные об игре. И теперь знаем о спортивном состязании больше присутствующего на нем зрителя, а иногда и судьи.
Читать полностью »
Зачем заводам машинное обучение
2018-11-15 в 7:39, admin, рубрики: автоматизация, Блог компании Smile-Expo, заводы, индустрия 4.0, интервью, Интернет вещей, машинное обучение, смайл экспоКак машинное обучение внедряется на промышленных предприятиях, кто в этом достиг наибольших успехов и какие примеры использования уже есть, мы узнали у Романа Чеботарёва. Роман — архитектор ML и директор по внедрению в компании «Цифра». Он 11 лет занимается внедрением умных технологий класса Machine Learning и Artificial Intelligence. Последние несколько лет Роман специализируется на ML/AI в промышленности.
Расскажите о своем профессиональном пути
Свой профессиональный путь я начал с машинного обучения (хотя тогда такой термин еще массово не использовался) для задач компьютерного зрения. Я разрабатывал различные модули для систем видеоаналитики: детекторы скоплений людей, детекторы дыма, счетчики объектов. Тогда еще они планировались как охранные системы будущего поколения — сейчас они используются повсеместно.
Потихоньку от анализа изображений я перешел в анализ данных вообще. Я уже работал в компании «КРОК», куда пришел разработчиком, а уходил руководителем практики машинного обучения. Большую часть опыта я получил именно там и в основном мы решали задачи, связанные с прогнозированием различных количественных величин в будущем. Больше задач было в ритейле — машинное обучение тогда было наиболее востребовано у заказчиков именно в этой сфере. Мы решали задачи прогнозирования спроса для оптимизации логистики. Таких задач было достаточно много в разных сферах: от фуд-ритейла до автомобильных заправок.
Потом серьезный интерес к машинному обучению начал формироваться со стороны промышленных предприятий. В какой-то момент я с партнерами решил организовать собственный стартап — Theta Data Solution. Мы сделали 6 проектов и больше 10 пилотов за год для промышленных предприятий, а потом нашу компанию приобрела компания «Цифра», где я сейчас работаю директором по внедрению в департаменте AI. По сравнению с первоначальной командой стартапа мы сильно расширились: сейчас в нашем AI-tribe (как мы себя называем) больше 30 человек. Читать полностью »
Intel Vision Accelerator — Deep Learning в каждый дом
2018-11-15 в 7:17, admin, рубрики: Intel Vision Accelerator, Блог компании Intel, Интернет вещей, машинное обучение, обработка изображений
Отвлечемся ненадолго от темы новых процессоров Intel (это совсем ненадолго) и поговорим о машинном зрении и Deep Learning. Вообще, тема AI стала общей при обсуждении перспектив развития компьютерной техники, и многие, я думаю, заметили следующую особенность. Постепенно, по мере совершенствования специализированных аппаратных и программных средств, элементы AI выходят из дата-центров с супер-серверами «в поля», становятся все более доступными технически и финансово. В Intel также видят эту тенденцию, и, чтобы упростить внедрение передовых технологий в повседневную жизнь, предлагают вендорам воспользоваться их новым решением — Intel Vision Accelerator.
Читать полностью »
В Google рассказывают, как «экспоненциальный» рост ИИ изменяет саму природу вычислений
2018-11-14 в 12:00, admin, рубрики: Google, TPU, искусственный интеллект, машинное обучение, нейросетиПрограммист из Google Клиф Янг объясняет, как взрывное развитие алгоритмов глубинного обучения совпадает с отказом закона Мура, десятилетиями работавшего эмпирического правила прогресса компьютерных чипов, и заставляет разрабатывать принципиально новые вычислительные схемы
Взрывное развитие ИИ и алгоритмов машинного обучения изменяет саму природу вычислений – так говорят в одной из самых крупных компаний, практикующих ИИ – в Google. Программист из Google Клиф Янг выступил на открытии осенней конференции по микропроцессорам, организованной компанией Linley Group – популярном симпозиуме по теме компьютерных чипов, проводимом почтенной компанией, занимающейся полупроводниковым анализом.
Янг сказал, что использование ИИ перешло в «экспоненциальную фазу» в тот самый момент, когда закон Мура, десятилетиями работавшее эмпирическое правило прогресса компьютерных чипов, полностью затормозилось.
Читать полностью »
Firebase Summit 2018: коротко о главном
2018-11-14 в 7:53, admin, рубрики: firebase, Firebase Analytics, firebase cloud messaging, Firebase Remote Config, Firebase Storage, Firebase Test Lab, Google Cloud Platform, machine learning, TensorFlow, Блог компании Mail.Ru Group, машинное обучение, Разработка под android, разработка под iOS
В конце прошлого месяца в Праге прошла конференция Firebase Summit 2018, посвященная сервисам Firebase, многие из которых сейчас претендуют на звание стандарта в индустрии разработки мобильных приложений. Постараюсь хоть и с задержкой, но рассказать о том, что интересного удалось услышать и увидеть. В этой статье мы рассмотрим анонсы (перевод официального пресс-релиза) с моими правками и комментариями.
Читать полностью »
Динамическое ценообразование, или Как Яндекс.Такси прогнозирует высокий спрос
2018-11-14 в 7:40, admin, рубрики: архитектура, Блог компании Яндекс, Исследования и прогнозы в IT, машинное обучение, прогнозирование, такси, яндексРаньше для вызова такси приходилось звонить на разные номера диспетчерских служб и ждать подачу машины полчаса или даже больше. Теперь сервисы такси хорошо автоматизированы, а среднее время подачи автомобиля Яндекс.Такси в Москве около 3-4 минут. Но стоит пойти дождю или закончиться массовому мероприятию, и мы вновь можем столкнуться с дефицитом свободных машин.
Меня зовут Скогорев Антон, я руковожу группой разработки эффективности платформы в Яндекс.Такси. Сегодня я расскажу читателям Хабра, как мы научились прогнозировать высокий спрос и дополнительно привлекать водителей, чтобы пользователи могли найти свободную машину в любое время. Вы узнаете, как формируется коэффициент, влияющий на стоимость заказа. Там всё далеко не так просто, как может показаться на первый взгляд.
Что требуется сделать в языке Java для полноценной поддержки машинного обучения
2018-11-12 в 12:16, admin, рубрики: cnn, java, python, pytorch, TensorFlow, Блог компании Издательский дом «Питер», машинное обучение, нейронные сети, Профессиональная литератураЗдравствуйте, коллеги!
Из последних известий по нашим планируемым новинкам из области ML/DL:
Нишант Шакла, "Машинное обучение с Tensorflow" — книга в верстке, ожидается в магазинах в январе
Делип Рао, Брайан Макмахан, "Обработка естественного языка на PyTorch" — контракт подписан, планируем приступать к переводу в январе.
В данном контексте мы хотели в очередной раз вернуться к болезненной теме — слабой проработке темы ML/DL в языке Java. Из-за явной незрелости этих решений и алгоритмов на языке Java мы когда-то приняли решение отказаться от книги Гибсона и Паттерсона по DL4J, и публикуемая сегодня статья Хамфри Шейла (Humphrey Sheil) подсказывает, что мы, вероятно, были правы. Предлагаем познакомиться с мыслями автора о том, каким образом язык Java мог бы наконец составить конкуренцию Python в машинном обучении
Читать полностью »