Рубрика «машинное обучение» - 124

Как доить коров роботами и сделать на этом промышленный стартап. История разработки R-SEPT - 1

В 2017 году в СМИ звучала крайне интересная история про стартап, который роботизирует доение коров на промышленных молочных фермах. Компания называется R-SEPT, и тогда она получила 10 миллионов рублей инвестиций. Но год прошел, а новостей, что произошло дальше, все нет. Мы связались с Алексеем Хахуновым, основателем стартапа и поговорили о разработке. Оказывается весь год его команда доводила прототип робота до ума, и как раз неделю назад провела первые полевые испытания на ферме.

Под катом — история, как студент-робототехник, выросший на родительской ферме, превратил университетский диплом в промышленный стартап, как собирал с друзьями первые манипуляторы, а потом выходил на уровень государственных программ по роботизации сельского хозяйства. Ну и самое главное — чем железная рука робота и машинное зрение лучше живой доярки.
Читать полностью »

Всем добрый день!

И у нас снова открыт новый поток на доработанный курса «Data scientist»: ещё один отличный преподаватель, чуть доработанная исходя из обновлений программа. Ну и как обычно интересные открытые уроки и подборки интересных материалов. Сегодня мы начнём разбор seq2seq моделей от Tensor Flow.

Поехали.

Как уже обсуждалось в туториале RNN (рекомендуем ознакомиться с ним перед чтением этой статьи), рекуррентные нейронные сети можно научить моделировать язык. И возникает интересный вопрос: возможно ли обучение сети на определенных данных для генерации осмысленного ответа? Например, можем ли мы научить нейронную сеть переводить с английского языка на французский? Оказывается, что можем.

Это руководство покажет вам, как создать и обучить такую систему end-to-end. Скопируйте основной репозиторий Tensor Flow и репозиторий моделей TensorFlow с GitHub. Затем, можно начать с запуска программы перевода:

cd models/tutorials/rnn/translate
python translate.py --data_dir [your_data_directory]

Модели Sequence-to-Sequence Ч.1 - 1Читать полностью »

Data Science проект от исследования до внедрения на примере Говорящей шляпы - 1

Месяц назад Лента запустила конкурс, в рамках которого та самая Говорящая Шляпа из Гарри Поттера определяет предоставивших доступ к социальной сети участников на один из четырех факультетов. Конкурс сделан неплохо, звучащие по-разному имена определяются на разные факультеты, причем схожие английские и русские имена и фамилии распределяются схожим образом. Не знаю, зависит ли распределение только от имен и фамилий, и учитывается ли как-то количество друзей или другие факторы, но этот конкурс подсказал идею этой статьи: попробовать с нуля обучить классификатор, который позволит распределять пользователей на различные факультеты.

Читать полностью »

Чем занимаются в департаменте R&D ABBYY: NLP Advanced Research Group - 1Чем занимаются в департаменте R&D в ABBYY? Чтобы ответить на этот вопрос, мы начинаем серию публикаций о том, как наши разработчики создают новые технологии и совершенствуют существующие решения. Сегодня расскажем про направление Natural Language Processing (NLP).

Мы в ABBYY занимаемся исследованиями в сфере обработки естественного языка и беремся за сложные научные задачи, для которых пока нет готовых решений. Так мы создаем инновации, которые ложатся в основу продуктов и помогают нашим заказчикам, да и нам двигаться вперед. Кстати, 24 ноября на лекции в Школе глубокого обучения при МФТИ руководитель NLP Advanced Research Group в департаменте R&D ABBYY Иван Смуров расскажет, какие в мире есть задачи по анализу текста и как современные нейросети позволяют их решать. А в этом посте Иван рассказал нам о трех задачах, которыми занимается сейчас. Читать полностью »

Развитие глубоких нейронных сетей для распознавания изображений вдыхает новую жизнь в уже известные области исследования в машинном обучении. Одной из таких областей является доменная адаптация (domain adaptation). Суть этой адаптации заключается в обучении модели на данных из домена-источника (source domain) так, чтобы она показывала сравнимое качество на целевом домене (target domain). Например, source domain может представлять собой синтетические данные, которые можно «дёшево» сгенерировать, а target domain — фотографии пользователей. Тогда задача domain adaptation заключается в тренировке модели на синтетических данных, которая будет хорошо работать с «реальными» объектами.

В группе машинного зрения Vision@Mail.Ru мы работаем над различными прикладными задачами, и среди них часто встречаются такие, для которых мало тренировочных данных. В этих случаях сильно может помочь генерация синтетических данных и адаптация обученной на них модели. Хорошим прикладным примером такого подхода является задача детектирования и распознавания товаров на полках в магазине. Получение фотографий таких полок и их разметка довольно трудозатратны, зато их можно достаточно просто сгенерировать. Поэтому мы решил глубже погрузиться в тему доменной адаптации.

Обзор основных методов Deep Domain Adaptation (Часть 1) - 1

Читать полностью »

Перевод Neural Network Architectures

Алгоритмы глубоких нейросетей сегодня обрели большую популярность, которая во многом обеспечивается продуманностью архитектур. Давайте рассмотрим историю их развития за последние несколько лет. Если вас интересует более глубокий анализ, обратитесь к этой работе.

Архитектуры нейросетей - 1
Сравнение популярных архитектур по Top-1 one-crop-точности и количеству операций, необходимых для одного прямого прохода. Подробнее здесь.
Читать полностью »

У розницы очень разнообразный круг покупателей. Их много – всевозможных профессий и уровней дохода, от молодёжи до пенсионеров. Такое разнообразие не получится корректно описать двумя-тремя бизнес-правилами, потому что вы просто не сможете охватить все сочетания критериев и неизбежно потеряете часть клиентов. Поэтому для розницы очень важно как можно точнее сегментировать свою аудиторию, но это неизбежно усложняет модели. Здесь на помощь приходят технологии Machine Learning, дающие бизнесу более точные прогнозы и ответы на важные вопросы.

Что дает рознице машинное обучение: пример проекта - 1

Что дает рознице машинное обучение: пример проекта - 2
Читать полностью »

В предыдущих статьях (I, II, III) я подробно рассказывал о разработке сервиса для поиска выгодных б/у автомобилей в РФ.
Поездив продолжительное время на различных б/у машинах, я задумался о приобретении нового авто и решил этот вопрос подробно изучить. В крупных городах существует огромное количество официальных дилеров, по крайней мере для популярных брендов. Дилеры отличаются друг от друга перечнем автомобилей в наличии и размером предоставляемых скидок на различные модели. В поисках интересующих меня автомобилей мне не хотелось обзванивать и посещать всех дилеров подряд. На мой взгляд, разумно было предварительно отобрать по априорной информации только тех дилеров, которые предоставляют самые низкие цены на интересующие меня модели и комплектации. Тот факт, что при личном общении, если уметь торговаться, размер скидки может существенно возрасти никак не противоречит цели в первую очередь посетить дилеров, предоставляющих наиболее выгодные цены на рынке.
Я собрал данные о новых автомобилях, проанализировал, оформил в виде сервиса, и под конец года, когда скидки у дилеров максимальны, решил поделиться им с вами.

Как программист новую машину подбирал - 1

Читать полностью »

В преддверии нашего турнира по олдскульным видеоиграм Game Overnight мы решили поговорить о ботах в компьютерных играх.

Наверное вы слышали о том, что возможности современных ботов для компьютерных игр превышают человеческие. Такие боты могут быть жёстко запрограммированными, всегда одинаково реагирующими на одни и те же наборы входных данных. Ещё один подход к их разработке заключается в том, что им позволяют учиться и эволюционировать. Они по-разному ведут себя в одних и тех же ситуациях в попытках найти оптимальные решения встающих перед ними проблем.

Почему машина может нечеловечески хорошо играть в Mario, но не в Pokemon? - 1
Читать полностью »

В рамках реализации большой задачи по Sentiment Analysis (анализ отзывов) я решил уделить некоторое время дополнительному изучению её отдельного элемента — использованию VotingClassifier из модуля sklearn.ensemble как инструмента для построения ансамбля моделей классификации и повышению итогового качества предсказаний. Почему это важно и какие есть нюансы?
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js