Рубрика «машинное обучение» - 121

Google News и Лев Толстой: визуализация векторных представлений слов с помощью t-SNE - 1

Каждый из нас воспринимает тексты по-своему, будь это новости в интернете, поэзия или классические романы. То же касается алгоритмов и методов машинного обучения, которые, как правило, воспринимают тексты в математической в форме, в виде многомерного векторного пространства.

Статья посвящена визуализации при помощи t-SNE рассчитанных Word2Vec многомерных векторных представлений слов. Визуализация позволит полнее понять принцип работы Word2Vec и то, как следует интерпретировать отношения между векторами слов перед дальнейшем использованием в нейросетях и других алгоритмах машинного обучения. В статье акцентируется внимание именно на визуализации, дальнейшее исследование и анализ данных не рассматриваются. В качестве источника данных мы задействуем статьи из Google News и классические произведения Л.Н. Толстого. Код будем писать на Python в Jupyter Notebook.
Читать полностью »

Привет всем, коллеги!

Возможно, поклонники библиотеки Tensorflow, уже заметившие у нас в предзаказе эту книгу, также присматривались к возможностям машинного и глубокого обучения в браузере, тем более, что тему не обошел вниманием и сам Франсуа Шолле. Интересующихся приглашаем под кат, где рассказано, как при помощи библиотеки Tensorflow.js распознаются изображения.
Читать полностью »

image

Каждый день полтора миллиона людей ищут на Ozon самые разные товары, и к каждому из них сервис должен подбирать похожие (если пылесос все-таки нужен помощней) или сопутствующие (если к поющему динозавру нужны батарейки). Когда видов товаров тоже много, решить задачу помогает модель Word2Vec. Разбираемся, как она работает и как создавать векторные представления для произвольных объектов.

Читать полностью »

Привет! Совсем недавно прошла конференция Connect(); 2018, на которой было сделано много интересных анонсов в областях мобильной разработки, веб-разработки, интернета вещей, искусственного интеллекта, машинного обучения, когнитивных сервисов, аналитики, вычислений, контейнеров, баз данных и интеграции. Под катом вы найдете список этих анонсов!

Microsoft Connect(); 2018: все анонсы конференции - 1Читать полностью »

Подробное интервью с легендарным лингвистом, вышедшее 6 лет назад, но ничуть не утратившее своей актуальности. Ноам Хомский —  «современный Эйнштейн», как его называют, делится своими соображениями об устройстве человеческого мышления и языка, искусственном интеллекте, состоянии современных наук. На днях ему исполнилось 90 лет, и это кажется достаточным поводом для публикации статьи. Интервью ведет молодой учёный-когнитивист Ярден Кац, он сам прекрасно разбирается в предмете, поэтому беседа очень содержательна, а вопросы столь же интересны, как и ответы.

Ноам Хомский: где искусственный интеллект пошел не туда? - 1

Читать полностью »

Специалистам по искусственному интеллекту платят почти в два раза больше, чем другим профессионалам в сфере IT. Мы разобрались, на какую зарплату можно рассчитывать в разных областях ИИ в России, кого ищут «Яндекс», ABBYY и «Сбербанк», и какие курсы можно использовать для обучения в этой сфере.

Зарплаты в ИИ: где больше денег и кого ищут в России - 1
Читать полностью »

Привет! Представляю вашему вниманию перевод статьи "Here's how an AI lie detector can tell when you're fibbing" автора Rob Verger.

AI детектор лжи может определить, когда человек врет - 1

Сегодня искусственный интеллект встречается повсюду – он определяет, что находится на фотографиях еды (на таких сайтах, как Yelp), помогает исследователям в попытках ускорения процесса МРТ и даже может искать признаки депрессии в голосе человека. Но вот об использовании искусственного интеллекта как детектора лжи вряд ли многие задумывались.Читать полностью »

Вместо предисловия

Допустим, сидя вечерком в теплом кресле вам вдруг пришла в голову шальная мысль: «Хм, а почему бы мне вместо случайного подбора гиперпараметров модели не узнать, а почему оно всё работает?»
Читать полностью »

Это tutorial по библиотеке TensorFlow. Рассмотрим её немного глубже, чем в статьях про распознавание рукописных цифр. Это tutorial по методам оптимизации. Совсем без математики здесь не обойтись. Ничего страшного, если вы её совершенно забыли. Вспомним. Не будет никаких формальных доказательств и сложных выводов, только необходимый минимум для интуитивного понимания. Для начала небольшая предыстория о том, чем этот алгоритм может быть полезен при оптимизации нейронной сети.

Реализация алгоритма Левенберга-Марквардта для оптимизации нейронных сетей на TensorFlow - 1

Полгода назад друг попросил показать, как на Python сделать нейросеть. Его компания выпускает приборы для геофизических измерений. Несколько различных зондов в процессе бурения измеряют набор сигналов, связаных с параметрами окружающей скважину среды. В некоторых сложных случаях точно вычислить параметры среды по сигналам долго даже на мощном компьютере, а необходимо интерпретировать результаты измерений в полевых условиях. Возникла идея посчитать на кластере несколько сот тысяч случаев, и на них натренировать нейронную сеть. Так как нейросеть работает очень быстро, её можно использовать для определения параметров, согласующихся с измеренными сигналами, прямо в процессе бурения. Детали есть в статье:

Kushnir, D., Velker, N., Bondarenko, A., Dyatlov, G., & Dashevsky, Y. (2018, October 29). Real-Time Simulation of Deep Azimuthal Resistivity Tool in 2D Fault Model Using Neural Networks (Russian). Society of Petroleum Engineers. doi:10.2118/192573-RU

Одним вечером я показал, как keras реализовать простую нейронную сеть, и друг на работе запустил обучение на насчитанных данных. Через пару дней обсудили результат. С моей точки зрения он выглядел перспективно, но друг сказал, что нужны вычисления с точностью прибора. И если средняя квадратичная ошибка (mean squared error) получилась в районе 1, то нужна была 1е-3. На 3 порядка меньше. В тысячу раз.

Читать полностью »

В 2014 году исследователь в области машинного обучения Ян Гудфеллоу выдвинул идею генеративных состязательных сетей или GAN. «Генеративность» состоит в том, что результатом их работы являются изображения, а не оценка ввода (типа «хот-дог или нет»), а «состязательность» — в том, что две нейросети играют в кошки-мышки, как федералы с фальшивомонетчиками: одна нейросеть пытается обмануть другую, создавая реалистичные картинки, а вторая старается отличить фейк.

Первые изображения GAN было легко идентифицировать. Посмотрите на эти лица 2014 года.

На чём прокалывается ИИ при генерации человеческих лиц - 1
«Обучение без учителя представлению с глубокими свёрточными генеративными состязательными сетями» (2014), Рэдфорд и др. Также известны как DCGAN
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js