Рубрика «машинное обучение» - 111

Один из главных источников данных для сервиса Яндекс.Карты — спутниковые снимки. Чтобы с картой было удобно работать, на снимках многоугольниками размечаются объекты: леса, водоёмы, улицы, дома и т. п. Обычно разметкой занимаются специалисты-картографы. Мы решили помочь им и научить компьютер добавлять многоугольники домов без участия людей.

За операции с изображениями отвечает область ИТ, которая называется компьютерным зрением. Последние несколько лет большую часть задач из этой области очень удачно решают, применяя нейронные сети. О нашем опыте применения нейронных сетей в картографировании мы и расскажем сегодня читателям Хабра.

Как превратить спутниковые снимки в карты. Компьютерное зрение в Яндексе - 1

Читать полностью »

В Москве протестируют беспилотный трамвай. Мы поговорили с разработчиками автопилота - 1

На днях «Ведомости» рассказали, что скоро в Москве начнут тестировать беспилотный трамвай. Сейчас его испытывают в депо, но через пару месяцев планируют запустить на маршруте №17 — пока без пассажиров и с водителем в кабине.

На следующем этапе водитель тоже продолжит контролировать трамвай. Система будет только фиксировать срабатывания, но на управление трамваем сможет повлиять только в двух случаях — затормозит, если увидит на путях посторонний объект, и снизит скорость, если водитель слишком разгонится в плохих погодных условиях.

Скорее всего, полностью беспилотным трамвай станет только через несколько лет. Как пишут «Ведомости», к 2021-2022 годам.

Разработка идет на базе модели «Витязь М», которую выпускает «ПК Транспортные системы», а самим автопилотом занимается компания Cognitive Technologies. Руководитель ее департамента разработки беспилотных транспортных средств Юрий Минкин рассказал нам о проекте подробнее.
Читать полностью »

Scala + MXNet=Микросервис с нейронкой в проде - 1

В интернете есть огромное количество руководств и примеров, на основе которых вы, дорогие читатели, сможете «без особого труда» и с «минимальными» временными затратами написать код, способный на фото отличать кошечек от собачек. И зачем тогда тратить время на эту статью?

Основной, на мой взгляд, недостаток всех этих примеров — ограниченность возможностей. Вы взяли пример, — пусть даже с базовой нейронной сетью, которую предлагает автор, — запустили его, возможно, он даже заработал, а что дальше? Как сделать так, чтобы этот незамысловатый код начал работать на production-сервере? Как его обновлять и поддерживать? Вот тут и начинается самое интересное. Мне не удалось найти полного описания процесса от момента «ну вот, ML-инженер обучил нейронную сеть» до «наконец-то мы выкатили это в production». И я решил закрыть этот пробел.
Читать полностью »

Видео докладов с FunTech ML-meetup - 1

В прошлую субботу мы провели бэкенд митап по машинному обучению. В программе было 5 докладов от спикеров из ВКонтакте, Yandex.Taxi, Conundrum, FunCorp и Mail.ru Group. Под катом видео выступлений и ссылки на презентации.Читать полностью »

Техносфере пять лет - 1

Сегодня проект Техносфера празднует своё пятилетие. Вот наши достижения за эти годы:

  • Обучение завершили 330 выпускников.
  • На курсе обучается 120 студентов.
  • Занятия ведут 30 преподавателей.
  • В учебной программе 250 занятий по 16 дисциплинам.
  • Ученики выполняют 71 ДЗ.
  • 8000 пользователей.
  • Больше 100 студентов начали свою карьеру в Mail.ru Group.

В конце обучения студенты создают собственные выпускные проекты, на которые им даётся три месяца. И в честь пятилетия Техносферы мы собрали самые яркие выпускные работы последних лет. О своих проектах расскажут сами выпускники.
Читать полностью »

Julia, Градиентный спуск и симплекс метод - 1

Продолжаем знакомство с методами многомерной оптимизации.

Далее предложена реализация метода наискорейшего спуска с анализом скорости выполнения, а также имплементация метода Нелдера-Мида средствами языка Julia и C++.

Читать полностью »

Магистерская программа «Разработка программного обеспечения / Software Engineering» компании JetBrains на базе Университета ИТМО объявляет набор на 2019-2021 уч.гг.

Приглашаем выпускающихся из бакалавриата получить актуальные знания в области программирования и компьютерных наук.

Набор на магистерскую программу JetBrains на базе Университета ИТМО - 1

Читать полностью »

На курсах по машинному обучению в Artezio я познакомился с учебной моделью, способной создавать музыку. Музыка – существенная часть моей жизни, я много лет играл в группах (панк-рок, регги, хип-хоп, рок и т. д.) и являюсь фанатичным слушателем.  

К сожалению, многие группы, большим поклонником которых я был в юности, распались по разным причинам. Или не распались, но то, что они теперь записывают…  в общем, лучше бы они распались.

Мне стало любопытно, существует ли сейчас готовая модель, способная обучиться на треках одной из моих любимых групп и создать похожие композиции. Раз у самих музыкантов уже не очень получается, может, нейросеть справится за них?

Мечтают ли андроиды об электропанке? Как я учил нейросеть писать музыку - 1

Источник
Читать полностью »

Создание автономных машин — популярная нынче тема и много интересного тут происходит на любительском уровне.
Самым старым и известным курсом была онлайн-степень от Udacity.

Итак, в автономных машинах есть очень модный подход — Behavioral Cloning, суть которого заключается в том, что компьютер учится вести себя как человек (за рулем), опираясь только на записанные входные и выходные данные. Грубо говоря, есть база картинок с камеры и соотвествующий им угол поворота руля.
Читать полностью »

Имея возможность качественно оценить положение в игре в какой-то момент времени и возможность симулировать игровой мир, при создании бота, для одного из решений, остается лишь стремиться совершать такие действия, которые приводят к улучшению этой оценки в ближайшем будущем.

Функция оценки положения — возвращает вещественное значение где меньшее означает худшее. На вход такой функции я подавал только положение и вектор скорости мяча. Изначально эта функция была реализована довольно простыми формулами и парой if-ов. Однако это дало хорошую основу для накрутки на localrunner-е множества логов для последующего обучения нейросети. Так я прокрутил 300 игр (по 18000 тиков) локально, что в сумме дало около 12ГБ логов и плюс к этому 145 логов игр топов было скачано с сервера (5.7гб).

Далее нужно было выделить из этих логов обучающую и тестовую выборки. Делал я это следующим образом: отталкиваясь от забитого гола смотрел в «прошлое» на 300 тиков (5 секунд) и шагом в 5 тиков каждое положение и скорость мяча + эталонную оценку брал за пример.

Важный момент: эталонная оценка (выход) здесь вычислялась по формуле

$$display$$O = S/exp(T/60)$$display$$

где S = -1 если мяч залетает в «мои» ворота и 1 в обратном случае, а T это время в тиках оставшееся до гола.
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js