Среди дата сайнтистов ведется немало холиваров, и один из них касается соревновательного машинного обучения. Действительно ли успехи на Kaggle показывают способности специалиста решать типичные рабочие задачи? Арсений arseny_info (R&D Team Lead @ WANNABY, Kaggle Master, далее в тексте A.) и Артур n01z3 (Head of Computer Vision @ X5 Retail Group, Kaggle Grandmaster, далее в тексте N.) отмасштабировали холивар на новый уровень: вместо очередного обсуждения в чате взяли микрофоны и устроили публичное обсуждение на митапе, по мотивам которого и родилась эта статья.
Читать полностью »
Рубрика «машинное обучение» - 110
Kaggle-подходы для CV в проде: внедрить нельзя выпилить
2019-02-20 в 11:25, admin, рубрики: kaggle, ods.ai, Блог компании Open Data Science, искусственный интеллект, Компьютерное зрение, машинное обучение, никто не читает теги, обработка изображений, управление проектамиКак я познакомился с OpenCV или в поисках ColorChecker
2019-02-19 в 14:40, admin, рубрики: cs центр, анализ данных, Анализ и проектирование систем, Блог компании Computer Science Center, машинное обучение, обработка изображенийЯ учусь в CS центре в Новосибирске уже второй год. До поступления у меня уже была работа в IT — я работал аналитиком в Яндексе, но мне хотелось развиваться дальше, узнать что-то за пределами текущих задач и, по совету коллеги, я поступил в CS центр. В этой статье я хочу рассказать о практике, которую проходил во время учебы.
В начале первого семестра нам предложили несколько проектов. Мое внимание сразу зацепилось за проект под названием «Метод оценки цвета зерна по фотографии». Эту тему предложили специалисты из Института цитологии и генетики СО РАН, но сам проект был больше связан с анализом и обработкой изображений, чем с биологией. Я выбрал его, потому что интересовался машинным обучением и распознаванием образов и мне хотелось попрактиковаться в этих областях.
Читать полностью »
Полцарства за ИИ: сколько банки экономят на машинном обучении, нейросетях и чат-ботах
2019-02-19 в 13:40, admin, рубрики: AI, machine learning, Алгоритмы, Блог компании Binary District, искусственный интеллект, машинное обучениеОценка кредитоспособности по профилю клиента в фейсбуке, роботы для взыскания долгов и финансовых советов инвесторам, борьба с мошенниками и битва с рутиной — искусственный интеллект в банках нужен почти во всех областях. О том, как ИИ помогает Сбербанку, ВТБ, Тинькофф-банку и другим финансовым организациям экономить миллиарды рублей — в обзоре Binary District.
Как научить машину понимать инвойсы и извлекать из них данные
2019-02-19 в 12:44, admin, рубрики: ABBYY, data augmentation, LSTM, machine learning, ner, ocr, Блог компании ABBYY, высокая производительность, документы, извлечение данных, инвойсы, искусственный интеллект, машинное обучение, нейронные сети, технологииПривет! Меня зовут Станислав Семенов, я работаю над технологиями извлечения данных из документов в R&D ABBYY. В этой статье я расскажу об основных подходах к обработке полуструктурированных документов (инвойсы, кассовые чеки и т.д.), которые мы использовали совсем недавно и которые используем прямо сейчас. А еще мы поговорим о том, насколько для решения этой задачи применимы методы машинного обучения.
Читать полностью »
Rekko Challenge
2019-02-18 в 14:16, admin, рубрики: big data, boosters, competitive programming, data mining, machine learning, movies, Okko, recommender systems, Блог компании Okko, машинное обучение, Спортивное программирование
Сегодня мы запускаем Rekko Challenge 2019 — соревнование по машинному обучению от онлайн-кинотеатра Okko.
Мы предлагаем вам построить рекомендательную систему на реальных данных одного из крупнейших российских онлайн-кинотеатров. Уверены, что эта задача будет интересна и новичкам, и опытным специалистам. Мы постарались сохранить максимальный простор для творчества, при этом не перегружая вас гигабайтными датасетами с сотнями предварительно посчитанных признаков.
Подробнее про Okko, задачу, данные, призы и правила — ниже.
Классификация рукописных рисунков. Доклад в Яндексе
2019-02-18 в 7:00, admin, рубрики: Google, Блог компании Яндекс, классификатор, классификация изображений, Компьютерное зрение, конкурсы разработчиков, машинное обучение, нейронные сети, распознавание образов, рукописный, Спортивное программированиеНесколько месяцев назад наши коллеги из Google провели на Kaggle конкурс по созданию классификатора изображений, полученных в нашумевшей игре «Quick, Draw!». Команда, в которой участвовал разработчик Яндекса Роман Власов, заняла в конкурсе четвертое место. На январской тренировке по машинному обучению Роман поделился идеями своей команды, финальной реализацией классификатора и интересными практиками соперников.
— Всем привет! Меня зовут Рома Власов, сегодня я вам расскажу про Quick, Draw! Doodle Recognition Challenge.
Читать полностью »
Задача классификации глазами школьника: определение наличия автомобиля на парковке по кадрам с камеры видеонаблюдения
2019-02-17 в 14:27, admin, рубрики: keras, opencv, python, TensorFlow, Компьютерное зрение, машинное обучение, нейронная сетьЗдравствуйте, я школьник 11 классов, интересуюсь программированием, около-IT тематикой.
Пишу данный пост с целью поделиться своим проектом, занявшим 10 часов моей жизни на выходных и выполненным с целью понять возможности современных методов анализа данных. Публикация может рассматриваться как пример удачной реализации для людей, несведущих в этой области знания, а так же как просьба указать мои ошибки для людей, соответственно, сведущих.
Читать полностью »
GPT-2 нейросеть от OpenAI. Быстрый старт
2019-02-16 в 21:04, admin, рубрики: gpt, GPT-2, nlp, OpenAI, искусственный интеллект, машинное обучение, нейронные сети, обработка естественного языка
Не успели отшуметь новости о нейросети BERT от Google, показавшей state-of-the-art результаты на целом ряде разговорных (NLP) задач в машинном обучении, как OpenAI выкатили новую разработку: GPT-2. Это нейронная сеть с рекордным на данный момент числом параметров (1.5 млрд, против обычно используемых в таких случаях 100-300 млн) оказалась способна генерировать целые страницы связного текста.
Генерировать настолько хорошо, что в OpenAI отказались выкладывать полную версию, опасаясь что эту нейросеть будут использовать для создания фейковых новостей, комментариев и отзывов, неотличимых от настоящих.
Тем не менее, в OpenAI выложили в общий доступ уменьшенную версию нейросети GPT-2, со 117 млн параметров. Именно ее мы запустим через сервис Google Colab и поэкспериментруем с ней.
Новый подход к пониманию мышления машин
2019-02-15 в 10:57, admin, рубрики: Google Brain, интерпретируемость, искусственный интеллект, машинное обучениеНейросети известны своей непостижимостью – компьютер может выдать хороший ответ, но не сможет объяснить, что привело его к такому заключению. Бин Ким разрабатывает «переводчик на человеческий», чтобы, если искусственный интеллект сломается, мы смогли это понять.
Бин Ким, исследователь из Google Brain, разрабатывает способ, который позволит расспросить систему, использующую машинное обучение, по поводу принятых ею решений
Если доктор скажет вам, что вам нужна операция, вы захотите узнать, почему – и вы будете ожидать, что его объяснение покажется вам осмысленным, даже если вы не обучались на врача. Бин Ким [Been Kim], исследователь из Google Brain, считает, что мы должны иметь возможность ожидать того же от искусственного интеллекта (ИИ). Она — специалист по «интерпретируемому» машинному обучению (МО), и хочет создать ИИ, который сможет объяснять свои действия кому угодно.
Читать полностью »