Рубрика «машинное обучение» - 100

Вы пока не разбираетесь, почему ReLU лучше сигмоиды, чем отличается Rprop от RMSprop, чем нормализованный сигнал лучше ненормализованного и почему сигналы вообще стоит пробрасывать? И зачем нейронной сети нужен граф, и какую он совершил ошибку, что она распространяется обратно? У вас есть проект, в котором требуется компьютерное зрение, но вы хотите его реализовать при помощи OpenCV? Вы делаете межгалактического робота для борьбы с грязными тарелками, и хотите, чтобы он мог сам решать, отмывать или и так сойдет? Или вы видели предложения по зарплатам для специалистов ML на hh.ru и все еще под впечатлением?

Мы запускаем открытый курс «Нейронные сети и компьютерное зрение», который адресован тем, кто в этой области делает первые шаги. В чем преимущества нашего курса?

  • авторы курса знают, о чем говорят: это инженеры московского Центра искусственного интеллекта Samsung, Михаил Романов и Игорь Слинько;
  • есть как теория (с опциональными математическими задачами для улучшения понимания), так и практика на PyTorch
  • приступаем к практике сразу после освоения минимальных теоретических знаний.
  • есть котейки
  • и самое главное: лучшие студенты будут приглашены на собеседование в Samsung Research Russia!

Samsung открывает бесплатный онлайн-курс по нейросетям в задачах компьютерного зрения - 1
Читать полностью »

Всем привет. Моя команда в Тинькофф занимается построением рекомендательных систем. Если вы довольны вашим ежемесячным кэшбэком, то это наших рук дело. Также мы построили рекомендательную систему спецпредложений от партнеров и занимается индивидуальными подборками Stories в приложении Tinkoff. А еще мы любим участвовать в соревнованиях по машинному обучению чтобы держать себя в тонусе.

На Boosters.pro в течении двух месяцев с 18 февраля по 18 апреля проходило соревнование по построению рекомендательной системы на реальных данных одного из крупнейших российских онлайн-кинотеатров Okko. Организаторы преследовали цель улучшить существующую рекомендательную систему. На данный момент соревнование доступно в режиме песочницы, в которой вы можете проверить свои подходы и отточить навыки в построении рекомендательных систем.

alt_text

Читать полностью »

image Привет, Хаброжители! Маркос Лопез де Прадо делится тем, что обычно скрывают, — самыми прибыльными алгоритмами машинного обучения, которые он использовал на протяжении двух десятилетий, чтобы управлять большими пулами средств самых требовательных инвесторов.

Машинное обучение меняет практически каждый аспект нашей жизни, алгоритмы МО выполняют задачи, которые до недавнего времени доверяли только проверенным экспертам. В ближайшем будущем машинное обучение будет доминировать в финансах, гадание на кофейной гуще уйдет в прошлое, а инвестиции перестанут быть синонимом азартных игр.

Воспользуйтесь шансом поучаствовать в «машинной революции», для этого достаточно познакомиться с первой книгой, в которой приведен полный и систематический анализ методов машинного обучения применительно к финансам: начиная со структур финансовых данных, маркировки финансового ряда, взвешиванию выборки, дифференцированию временного ряда… и заканчивая целой частью, посвященной правильному бэктестированию инвестиционных стратегий.
Читать полностью »

Rekko — персональные рекомендации в онлайн-кинотеатре Okko

Знакома ли вам ситуация, когда на выбор фильма вы тратите гигантское количество времени, сопоставимое со временем самого просмотра? Для пользователей онлайн-кинотеатров это частая проблема, а для самих кинотеатров — упущенная прибыль.

К счастью, у нас есть Rekko — система персональных рекомендаций, которая уже год успешно помогает пользователям Okko выбирать фильмы и сериалы из более чем десяти тысяч единиц контента. В статье я расскажу вам как она устроена с алгоритмической и технической точек зрения, как мы подходим к её разработке и как оцениваем результаты. Ну и про сами результаты годового A/B теста тоже расскажу.

Читать полностью »

image

When I used to start a conversation about neural networks over a bottle of beer, people were casting glances at me of what seemed to be fear; they grew sad, sometimes with their eyelid twitching. In rare cases, they were even eager to take refuge under the table. Why? These networks are simple and instinctive, actually. Yes, believe me, they are! Just let me prove this is true!

Suppose there are two things I’m aware of about the girl: she looks pretty to my taste or not, and I have lots to talk about with her or I haven’t. True and false will be one and zero respectively. We’ll take similar principle for appearance. The question is: “What girl I’ll fall in love with, and why?”

We also can think it straight and uncompromisingly: “If she looks pretty and there’s plenty to talk about, then I will fall in love. If neither is true, then I quit”.

Читать полностью »

По итогу 70-ти лет исследований в области ИИ главный урок заключается в том, что общие вычислительные методы в конечном счёте наиболее эффективны. И с большим отрывом. Конечно, причина в законе Мура, точнее, в экспоненциальном падении стоимости вычислений.

Большинство исследований ИИ предполагали, что агенту доступны постоянные вычислительные ресурсы. В этом случае практически единственный способ повышения производительности — использование человеческих знаний. Но типичный исследовательский проект слишком краткосрочен, а через несколько лет производительность компьютеров неизбежно возрастает.

Стремясь к улучшению в краткосрочной перспективе, исследователи пытаются применить человеческие знания в предметной области, но в долгосрочной перспективе имеет значение только мощность вычислений. Эти две тенденции не должны противоречить друг другу, но на практике противоречат. Время, потраченное на одно направление, — это время, потерянное для другого. Есть психологические обязательства инвестировать в тот или иной подход. И внедрение знаний в предметной области имеет тенденцию усложнять систему таким образом, что она хуже подходит для использования общих вычислительных методов. Было много примеров, когда исследователи слишком поздно усваивали этот горький урок, и полезно рассмотреть некоторые из самых известных.
Читать полностью »

Тема безопасности машинного обучения довольно хайповая последнее время и хотелось затронуть именно практическую ее сторону. А тут повод крутой — PHDays, где собираются самые разные специалисты из мира ИБ и есть возможность привлечь внимание к этой теме.

В общем-то мы сделали task-based CTF, с заданиями затрагивающих часть рисков безопасности применения техник машинного обучения.

PHDays 9: разбор заданий AI CTF - 1
Читать полностью »

Специалисты МТИ создали нейросеть, которая воссоздает внешность человека по голосу - 1

23 мая исследователи Массачусетского технологического института в сотрудничестве с командой Google AI представили итоги работы над нейросетью Speech2Face, которая может по короткой аудиозаписи со звучащей речью реконструировать внешность говорящего. Разработчики не преследовали цели добиться точного сходства – проект носил экспериментальный характер и был призван показать, какой объем информации о человеке можно получить, прослушивая его голос.
Читать полностью »

ИИ датских разработчиков вычисляет школьников, заказывающих домашние работы в Сети - 1

Исследовательская группа Копенгагенского университета сообщила о результатах тестирования новой нейросети Ghostwriter. Разработанный учеными алгоритм искусственного интеллекта анализирует тексты письменных работ, которые сдают учителям школьники, чтобы установить авторство и выявить тех, кто прибегает к услугам текстовых бирж.
Читать полностью »

image

Привет!

Год назад мы проделали отличную работу. Корявенько, наполовину, но всё же отличную. Ноосфера послала мне сигнал, что пришла пора доделать её до конца. Я думал, что эта работа оказалось никому не нужна, но неделю назад известный писатель-фантаст-киберпанкер спросил меня, когда же продолжение переводов? Я ответил, что основного бойца забрали в армию год назад и пока перевод не предвидится. А через 10 часов после моего ответа — получаю письмо: «Я вернулся из армии, готов возобновить переводы.»

Тезисы:

  1. Мы рождаемся с множеством ментальных ресурсов.
  2. Мы учимся взаимодействовать с другими.
  3. Эмоции — это разные Образы Мышления.
  4. Мы учимся думать о недавних мыслях.
  5. Мы учимся думать на различных уровнях.
  6. Мы накапливаем колоссальный опыт.
  7. Мы переключаемся между различными Образами Мышления.
  8. Мы находим различные пути представления вещей.
  9. Мы строим различные модели себя.

Спасибо всем кто помогал: Станиславу Суханицкому, Savva Sumin, Victor Ivanov, urticazoku

Поэтому ждите новых глав, присоединяйтесь и помогайте с переводами (пишите в личку или на почту alexey.stacenko@gmail.com) Вот что есть готового на данный момент:
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js