Рубрика «машина Тьюринга» - 2

image
Источник: geektimes.ru

В первой половине XX века, когда были изобретены первые вычислительные машины. Однако наряду с физически осязаемыми машинами появлялись и машины-концепции. Одной из них была «машина Тьюринга» — абстрактное вычислительное устройство, придуманное в 1936 году Аланом Тьюрингом — учёным, которого считают одним из основоположников информатики.

Его кругозор распространялся от квантовой теории и принципа относительности до психологии и неврологии. А в качестве способа познания и передачи своих знаний Тьюринг использовал аппарат математики и логики. Он находил решения, казалось бы, нерешаемых задач, но был сильнее всего увлечен идеей «Универсальной машины», способной вычислить всё, что в принципе вычислимо.Читать полностью »

Каждый интересующийся шаблонами в С++ скорее всего слышал об их Тьюринг-полноте и связанных с этим шутках про «we put a language in your language, so you can program while you program». В этом посте я расскажу как с помощью шаблонов и константных выражений построить настоящую машину Тьюринга, вычисляющую результат своей работы во время компиляции, на которой можно будет запускать уже существующие программы. Например усердный бобер с 4 состояниями и 2 символами выглядит как-то так:

ADD_STATE(A);
ADD_STATE(B);
ADD_STATE(C);
ADD_STATE(D);

ADD_RULE(A, Blank, 1, Right, B);
ADD_RULE(A, 1, 1, Left, B);

ADD_RULE(B, Blank, 1, Left, A);
ADD_RULE(B, 1, Blank, Left, C);

ADD_RULE(C, Blank, 1, Right, Stop);
ADD_RULE(C, 1, 1, Left, D);

ADD_RULE(D, Blank, 1, Right, D);
ADD_RULE(D, 1, Blank, Right, A);

using tape = Tape<Blank>;
using machine = Machine<A, 0, tape>;
using result = Run<machine>::type;

int main() {
    print(result());
    return 0;
}

На выходе, как и положено, получаем

1 _ 1 1 1 1 1 1 1 1 1 1 1 1 

Тут можно посмотреть на код: https://ideone.com/MvBU3Z. Желающие узнать как все устроено внутри, добро пожаловать под кат.
Читать полностью »

Данную статью можно считать вольным переводом (хотя скорее попыткой разобраться) данной статьи. И да, написанна она скорее для математиков, нежели для широкой аудитории.

Небольшой спойлер: в начале это казалось мне какой-то магией, но потом я понял подвох…

В наши дни машина Тьюринга (далее МТ) — универсальное определение понятия алгоритма, а значит и универсальное определение «решателя задач». Существует множество других моделей алгоритма — лямбда исчисление, алгорифмы Маркова и т.д., но все они математически эквивалентны МТ, так что хоть они и интересны, но в теоретическом мире ничего существенно не меняют.

Вообще говоря, есть другие модели — Недетерминированная машина Тьюринга, Квантовые машины Тьюринга. Однако они (пока) являются только абстрактными моделиями, не реализуемые на практике.

Полгода назад в Science Advances вышла интересная статья с моделью вычислений, которая существенно отличается от МТ и которую вполне возможно реализовать на практике (собственно статья и была о том, как они посчитали задачу SSP на реальном железе).

И да. Самое интересное в этой модели то, что, по заверению авторов, в ней можно решать (некоторые) задачи из класса NP полных задач за полином времени и памяти.
Читать полностью »

В статье кратко рассказывается о машине Тьюринга и приводится ее реализация на Exсel. Полезна статья будет и тем, кто хочет познакомиться с машиной Тьюринга, и тем, кто хочет повысить свой кругозор в функционале Excel.
Читать полностью »

Есть такая штука — машина Тьюринга. Представляет собой простейший компьютер, однако писать под него хуже, чем на brainfuck'е. Решил я тут на днях побаловаться, но делать интерпретатор — не спортивно, да интерпретаторов этих — вагон. Потом меня посетила еще более странная идея — а чего бы не сделать это на Асме? (я его знаю паршиво, как раз решил потренироваться, так что сильно не пинайтесь).

Читать полностью »

Машина Тьюринга из Lego

Немного поцитирую вики:

Маши́на Тью́ринга (МТ) — абстрактный исполнитель (абстрактная вычислительная машина). Была предложена Аланом Тьюрингом в 1936 году для формализации понятия алгоритма.

Машина Тьюринга является расширением конечного автомата и, согласно тезису Чёрча — Тьюринга, способна имитировать все другие исполнители (с помощью задания правил перехода), каким-либо образом реализующие процесс пошагового вычисления, в котором каждый шаг вычисления достаточно элементарен.

В состав машины Тьюринга входит бесконечная в обе стороны лента (возможны машины Тьюринга, которые имеют несколько бесконечных лент), разделённая на ячейки, и управляющее устройство, способное находиться в одном из множества состояний. Число возможных состояний управляющего устройства конечно и точно задано.Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js