Рубрика «maritime»

Необыкновенные приключения AIS в Китае, или как найти корабль в море

Во многих сообществах, интересующихся движением кораблей по морям, недавно появилась новость, что “в Китае запретили AIS” и всё в таком духе. Как обычно, в заголовках больше хайпа, чем на самом деле, но давайте разберёмся, о чём весь шум.

Прежде всего, что такое этот AIS, или Automatic Identification SystemЧитать полностью »

В прошлой статье мы описали эксперимент по определению минимального объема вручную размеченных срезов для обучения нейронной сети на данных сейсморазведки. Сегодня мы продолжаем эту тему, выбирая наиболее подходящую функцию потерь.

Рассмотрены 2 базовых класса функций – Binary cross entropy и Intersection over Union – в 6-ти вариантах с подбором параметров, а также комбинации функций разных классов. Дополнительно рассмотрена регуляризация функции потерь.

Спойлер: удалось существенно улучшить качество прогноза сети.

Настройка функции потерь для нейронной сети на данных сейсморазведки - 1
Читать полностью »

Сложность интерпретации данных сейсмической разведки связана с тем, что к каждой задаче необходимо искать индивидуальный подход, поскольку каждый набор таких данных уникален. Ручная обработка требует значительных трудозатрат, а результат часто содержит ошибки, связанные с человеческим фактором. Использование нейронных сетей для интерпретации может существенно сократить ручной труд, но уникальность данных накладывает ограничения на автоматизацию этой работы.

Данная статья описывает эксперимент по анализу применимости нейронных сетей для автоматизации выделения геологических слоев на 2D-изображениях на примере полностью размеченных данных из акватории Северного моря.
Проведение акваториальной сейсморазведки
Рисунок 1. Проведение акваториальной сейсморазведки (источник)
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js