Рубрика «малые выборки»

В целом ответ – да. Особенно, когда есть мозги и знание теоремы Байеса.
Напомню, что среднее и дисперсию можно считать только, если у вас имеется определенное количества событий. В старых методичках СССР РТМ (руководящий технический материал) говорилось, что чтобы считать среднее и дисперсию необходимо 29 измерений. Сейчас в ВУЗах немного округлили и используют число 30 измерений. С чем это связано – вопрос философский. Почему я не могу просто взять и посчитать среднее, если у меня есть 5 измерений? По идее ничто не мешает, только среднее получается нестабильным. После еще одного измерения и пересчета оно может сильно измениться и полагаться на него можно начиная где-то с 30 измерений. Но и после 31го измерения оно тоже пошатнется, только уже не так заметно. Плюс добавляется проблема, что и среднее можно считать поразомну и получать разные значения. То есть из большой выборки можно выбрать первые 30 и посчитать среднее, потом выбрать другие 30 и тд … и получить много средних, которые тоже можно усреднять. Истинное среднее бывает недостижимо на практике, так как всегда имеем конечное количество измерений. В таком случае среднее является статистической величиной со своим средним и дисперсией. То есть измеряя среднее на практике мы имеем в виду «предположительное среднее», которое может быть близко к идеальному теоретическом значению.

Попробуем разобраться в вопросе, на входе мы имеем некоторое количество фактов и хотим на выходе построить представление об источнике этих фактов. Будем строить мат модель и использовать теорию Байеса для связки модели и фактов.
Можно ли считать статистику при малом количестве данных? - 1
Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js