
Краткое содержание
Данная статья описывает работу пакета nnhelper, предназначенного для создания и использования нейронных сетей в программах на языке Go.
Данная статья описывает работу пакета nnhelper, предназначенного для создания и использования нейронных сетей в программах на языке Go.
Данный текст является авторским переводом поста A Scalable Approach for Partially Local Federated Learning.
Примечания:
Подведем основные итоги уходящего года. Рассмотрим самые громкие открытия в мире компьютерного зрения, обработки естественного языка, генерации изображений и видео, а также крупный прорыв в области биологии. Коротко о самом главном за год!
Если тебе интересно машинное обучение, то приглашаю в «Мишин Лернинг»Читать полностью »
NeurIPS (Neural Information Processing Systems) – самая большая конференция в мире по машинному обучению и искусственному интеллекту и главное событие в мире deep learning.
Будем ли мы, DS-инженеры, в новом десятилетии осваивать еще и биологию, лингвистику, психологию? Расскажем в нашем обзоре.
Привет!
Многие из читателей уже знают, что мы стараемся постоянно проводить различные IT-чемпионаты по самым разным тематикам. Только в прошлом году провели более 10 разных крупных соревнований (Russian AI Cup, ML Boot Camp, Технокубок и другие). В них приняло участие не менее 25 000 человек, а с 2011 года — более 150 000.
Если вы только сейчас узнали об этом, то поздравляем: именно с этой минуты вы стали частью большого сообщества людей, участвующих в наших соревнованиях и обменивающихся опытом друг с другом. Уже сейчас вы можете присоединиться к Telegram-группам сообществ по искусственному интеллекту, спортивному программированию, высоконагруженным проектам и администрированию, машинному обучению и анализу данных. Это поможет вам быстрее втянуться в серьёзную тусовку!
Итак, перейдём к делу. Сегодня, 7 февраля, мы рады открыть новый сезон чемпионатов 2019 года. И начнём с уже восьмого соревнования по машинному обучению и анализу данных, проводимого на специализированной платформе ML Boot Camp (наш аналог Kaggle) — SNA Hackathon, или ML Boot Camp 8 (как вам удобнее).
Читать полностью »
Здравствуйте, Читатели!
Недавно я запустил репозиторий Homemade Machine Learning, который содержит примеры популярных алгоритмов и подходов машинного обучения, таких как линейная регрессия, логистическая регрессия, метод K-средних и нейронная сеть (многослойный перцептрон). Каждый алгоритм содержит интерактивные демо-странички, запускаемые в Jupyter NBViewer-e или Binder-e. Таким образом у каждого желающего есть возможность изменить тренировочные данные, параметры обучения и сразу же увидеть результат обучения, визуализации и прогнозирования модели у себя в браузере без установки Jupyter-а локально.