Рубрика «machine learning» - 9

Как не пополнить ряды стремных специалистов, если ты Data Scientist - 1


Хабра-сообщество провело еще одно интервью в нашем образовательном проекте: прямых эфирах c ребятами из IT, которые отвечают на ваши вопросы в формате живого общения.

Наш проект — попытка создать полноценный набор гайдов и рекомендаций для успешной жизни разработчика: как построить карьеру, получить оффер мечты, привлечь инвестиции в стартап, не тухнуть на скучных проектах, вырасти в своем деле и по пути купить домик у моря.

В начале недели наши вопросы отвечал Борис Янгель — ML-инженер Яндекса, который участвовал в создании мозгов «Алисы», а теперь делает беспилотные автомобили. 

Боря рассказал о том, как стать крутым Data-Scientist, как парашютный спорт помогает ему в работе, почему конференции по ML бесполезны и ответил на недавний пост разгневанного отца про то, как Алиса рекомендовала видео с историями убийств ребенку.
Читать полностью »

3D ML. Часть 1: формы представления 3D-данных - 1

Сегодня появляется все больше 3D датасетов и задач, связанных с 3D данными. Это связано с развитием робототехники и машинного зрения, технологий виртуальной и дополненной реальности, технологий медицинского и промышленного сканирования. Алгоритмы машинного обучения помогают решать сложные задачи, в которых необходимо классифицировать трехмерные объекты, восстанавливать недостающую информацию о таких объектах, или же порождать новые. Несмотря на достигнутые успехи, в области 3D ML остаются нерешенными еще очень много задач, и эта серия заметок призвана популяризировать направление среди русскоязычного сообщества.

В первой части будут рассмотрены основные формы и форматы представления пространственных данных и их особенности.

Читать полностью »

Рубрика «Читаем статьи за вас». Апрель 2020. Часть 1 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Статьи на сегодня:

  1. TResNet: High Performance GPU-Dedicated Architecture (DAMO Academy, Alibaba Group, 2020)
  2. Controllable Person Image Synthesis with Attribute-Decomposed GAN (China, 2020)
  3. Learning to See Through Obstructions (Taiwan, USA, 2020)
  4. Tracking Objects as Points (UT Austin, Intel Labs, 2020)
  5. CookGAN: Meal Image Synthesis from Ingredients (USA, UK, 2020)
  6. Designing Network Design Spaces (FAIR, 2020)
  7. Gradient Centralization: A New Optimization Technique for Deep Neural Networks (Hong Kong, Alibaba, 2020)
  8. When Does Unsupervised Machine Translation Work? (Johns Hopkins University, USA, 2020)

Читать полностью »

Data Science и Machine Learning: как превращать будущее в настоящее - 1

ЗАВТРА, 18 мая в 20:00 специалист по Data Science и машинному обучению Борис Янгель будет отвечать на ваши вопросы о нейросетках и Machine Learning в формате живого интервью в нашем инстаграм-аккаунте. Вы можете задать ему свой вопрос в комментариях к этому посту и спикер ответит вам в прямом эфире.

О спикере

Борис закончил МГУ по специальности Machine Learning. Работал в Microsoft Research в группе Криса Бишопа над фреймворком infer.Net, затем в Яндексе руководил разработкой мозгов Алисы. Любит скайдайвинг, нейросетки, гоночные автомобили и смелые решения. Сейчас Борис работает в Яндексе над проектом беспилотных автомобилей.
Читать полностью »

Хочу с вами зачелленджить одну интересную штуку: попробовать обучить нейросеть в Google Таблицах. Безо всяких макросов и прочих хаков, на чистых формулах.

Учим нейросети в Google Таблицах - 1

Читать полностью »

Рубрика «Читаем статьи за вас». Март 2020. Часть 2 - 1

Привет!

Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество! Первая часть мартовской сборки обзоров опубликована ранее.

Статьи на сегодня:

  1. NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis (UC Berkeley, Google Research, UC San Diego, 2020)
  2. Scene Text Recognition via Transformer (China, 2020)
  3. PEGASUS: Pre-training with Extracted Gap-sentences for Abstractive Summarization (Imperial College London, Google Research, 2019)
  4. Lagrangian Neural Networks (Princeton, Oregon, Google, Flatiron, 2020)
  5. Deformable Style Transfer (Chicago, USA, 2020)
  6. Rethinking Few-Shot Image Classification: a Good Embedding Is All You Need? (MIT, Google, 2020)
  7. Attentive CutMix: An Enhanced Data Augmentation Approach for Deep Learning Based Image Classification (Carnegie Mellon University, USA, 2020)

Читать полностью »

Рубрика «Читаем статьи за вас». Март 2020. Часть 1 - 1

Привет! Продолжаем публиковать рецензии на научные статьи от членов сообщества Open Data Science из канала #article_essense. Хотите получать их раньше всех — вступайте в сообщество!

Статьи на сегодня:

  1. Fast Differentiable Sorting and Ranking (Google Brain, 2020)
  2. MaxUp: A Simple Way to Improve Generalization of Neural Network Training (UT Austin, 2020)
  3. Deep Nearest Neighbor Anomaly Detection (Jerusalem, Israel, 2020)
  4. AutoML-Zero: Evolving Machine Learning Algorithms From Scratch (Google, 2020)
  5. SpERT: Span-based Joint Entity and Relation Extraction with Transformer Pre-training (RheinMain University, Germany, 2019)
  6. High-Resolution Daytime Translation Without Domain Labels (Samsung AI Center, Moscow, 2020)
  7. Incremental Few-Shot Object Detection (UK, 2020)

Читать полностью »

Picture 1

Не так давно DeepCode, статический анализатор, основанный на машинном обучении, стал поддерживать проверку C и C++ проектов. И теперь мы можем на практике взглянуть, чем отличаются результаты классического статического анализа и статического анализа, основанного на машинном обучении.
Читать полностью »

В конце прошлого года, я написал статью, о том как был заинтригован возможностью распознавания объектов на изображениях с помощью нейронных сетей. В той статье мы с помощью PyTorch классифицировали на видео либо ягоду малину, либо ардуино-подобный контроллер. И не смотря на то, что PyTorch мне понравился, обратился я к нему потому, что не смог с наскока разобраться с TensorFlow. Но я пообещал, что ещё вернусь к вопросу распознавания объектов на видео. Кажется пришло время сдержать обещание.

В данной статье мы попробуем на своей локальной машине дообучить уже готовую модель в Tensorflow 1.13 и Object Detection API на нашем собственном наборе изображений, а потом используем её для распознавания ягод и контроллеров, в видеопотоке веб-камеры с помощью OpenCV.

Хотите к лету улучшить навык распознавания ягод? Тогда милости прошу под кат.

«Вы уж простите, обознался...» или распознаем малину и контроллеры с помощью Tensorflow Object Detection API - 1
Читать полностью »

Всем привет! Меня зовут Саша, я CTO & Co-Founder в LoyaltyLab. Два года назад я с друзьями, как и все бедные студенты, ходил вечером за пивом в ближайший магазин у дома. Нас очень расстраивало, что ритейлер, зная, что мы придём за пивом, не предлагает скидку на чипсы или сухарики, хотя это так логично! Мы не поняли, почему такая ситуация происходит и решили сделать свою компанию. Ну и как бонус выписывать себе скидки каждую пятницу на те самые чипсы.

image

И дошло всё до того, что с материалом по технической стороне продукта я выступаю на NVIDIA GTC. Мы рады делиться наработками с коммьюнити, поэтому я выкладываю свой доклад в виде статьи.

Читать полностью »


https://ajax.googleapis.com/ajax/libs/jquery/3.4.1/jquery.min.js