
Пользователи iFunny ежедневно загружают в приложение около 100 000 единиц контента, среди которого не только мемы, но и расизм, насилие, порнография и другие недопустимые вещи.
Пользователи iFunny ежедневно загружают в приложение около 100 000 единиц контента, среди которого не только мемы, но и расизм, насилие, порнография и другие недопустимые вещи.
Закройте глаза и представьте себя в цехах большого завода. Пусть это будет производство вакцин в ампулах. А вы, как и еще 70 человек, заняты тем, что целыми днями просматриваете ампулы, чтобы отобрать дефектные. И так весь день… Сколько ампул с малейшими отклонениями от нормы вы бы не заметили? Задачу усложняет то, что дефектом считается не только неправильная запайка, но и едва заметная точка на дне ампулы. Можете ли вы быть на 100% уверены, что не пропустили ни одного дефекта? А ведь вас еще будут выборочно перепроверять.
Устают глаза, притупляется внимание.
В июле исследователи Google из команды Brain Team поделились своими достижениями в области масштабирования изображений. Результаты своих исследований они опубликовали в блоге Google AI, посвящённом исследованиям и разработкам в области машинного обучения и искусственного интеллекта.
В статье под названием «Создание высокоточных изображений с использованием диффузионных моделей» (High Fidelity Image Generation Using Diffusion Models) продемонстрирована технология масштабирования изображений на базе диффузионных моделей.
Разработка R&D-проектов в сферах машинного обучения и искусственного интеллекта — задача, к которой следует подходить основательно, используя эффективную и проверенную схему работы. Рассказываем, какую методологию использует команда MIL team (среди клиентов — Huawei, Сбербанк, Ростелеком и другие) и как здесь помогут решения от Selectel.
Читать полностью »
Всем привет! Меня зовут Влад Виноградов, я руководитель отдела компьютерного зрения в компании EORA.AI. Мы занимаемся глубоким обучением уже более трех лет и за это время реализовали множество проектов для российских и международных клиентов в которые входила исследовательская часть и обучение моделей. В последнее время мы фокусируемся на решении задач поиска похожих изображений и на текущий момент создали системы поиска по логотипам, чертежам, мебели, одежде и другим товарам.
Эта публикация предназначена для Machine Learning инженеров и написана по мотивам моего выступления Читать полностью »
В середине 2020 года мы в «М.Видео-Эльдорадо» начали строить собственную систему видеоаналитики «с нуля», не используя сторонние готовые платформы. В перспективе она должна охватить более тысячи магазинов торговой сети. О том, почему мы выбрали этот путь и каких результатов добились, читайте в сегодняшней статье.Читать полностью »
Каждый специалист по Data Science тратит большую часть своего времени на визуализацию данных, их предварительную обработку и настройку модели на основе полученных результатов. Для каждого исследователя данных именно эти моменты – самая сложная часть процесса, поскольку хорошую модель можно получить при условии, что вы точно выполните все эти три шага. И вот 10 очень полезных расширений Jupyter Notebook, которые помогут вам выполнить эти шаги.
Ранее у нас в блоге уже был материал про лучших в Kaggle, а сегодня представляю вам интервью с признанным дата-сайентистом и гроссмейстером Kaggle Филиппом Сингером, который поделится своим опытом, вдохновением и и достижениями. Беседа призвана мотивировать и воодушевить других людей, которые хотят понять, что нужно, чтобы стать гроссмейстером Kaggle. Также в этом интервью мы узнаем больше об академическом прошлом Филиппа, его увлечении Kaggle и о его работе в качестве дата-сайентиста.
Работать с Data Science в Jupyter, конечно, очень приятно, но если вы хотите пойти дальше и развернуть свой проект или модель на облачном сервере, то здесь есть много отличных решений — с помощью Flask, Django или Streamlit. Хотя облачные решения по-прежнему самые популярные, часто хочется создать быстрое приложение с графическим интерфейсом. Например:
В этой статье мы покажем, как создать такой графический интерфейс, потратив минимум усилий на изучение библиотеки Python.