В этой статье речь пойдет о логистической регрессии и ее реализации в одном из наиболее производительных пакетов машинного обучения "R" — "XGboost" (Extreme Gradient Boosting).
В реальной жизни мы довольно часто сталкиваемся с классом задач, где объектом предсказания является номинативная переменная с двумя градациями, когда нам необходимо предсказать результат некого события или принять решения в бинарном выражении на основании модели данных. Например, если мы оцениваем ситуацию на рынке и нашей целью является принятие однозначного решения, имеет ли смысл инвестировать в определенный инструмент в данный момент времени, купит ли покупатель исследуемый продукт или нет, расплатится ли заемщик по кредиту или уволится ли сотрудник из компании в ближайшее время и.т.д. Читать полностью »